A New Numerical Scheme for the Space Fractional Diffusion Equation

2014 ◽  
Vol 599-601 ◽  
pp. 1305-1308 ◽  
Author(s):  
Jun Ying Cao ◽  
Zi Qiang Wang

We construct the numerical method of the space fractional diffusion equation in this paper. We propose an efficient method for its numerical solution. This method is based on a finite difference in time and finite element method in space. Convergence of the method is rigorously established. A series of numerical examples are provided to support the theoretical claims.

2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
O. Tasbozan ◽  
A. Esen ◽  
N. M. Yagmurlu ◽  
Y. Ucar

A collocation finite element method for solving fractional diffusion equation for force-free case is considered. In this paper, we develop an approximation method based on collocation finite elements by cubic B-spline functions to solve fractional diffusion equation for force-free case formulated with Riemann-Liouville operator. Some numerical examples of interest are provided to show the accuracy of the method. A comparison between exact analytical solution and a numerical one has been made.


2020 ◽  
Vol 4 (3) ◽  
pp. 39
Author(s):  
Rafał Brociek ◽  
Agata Chmielowska ◽  
Damian Słota

This paper presents the application of the swarm intelligence algorithm for solving the inverse problem concerning the parameter identification. The paper examines the two-dimensional Riesz space fractional diffusion equation. Based on the values of the function (for the fixed points of the domain) which is the solution of the described differential equation, the order of the Riesz derivative and the diffusion coefficient are identified. The paper includes numerical examples illustrating the algorithm’s accuracy.


2012 ◽  
Vol 2012 ◽  
pp. 1-25 ◽  
Author(s):  
Y. J. Choi ◽  
S. K. Chung

We consider finite element Galerkin solutions for the space fractional diffusion equation with a nonlinear source term. Existence, stability, and order of convergence of approximate solutions for the backward Euler fully discrete scheme have been discussed as well as for the semidiscrete scheme. The analytical convergent orders are obtained asO(k+hγ˜), whereγ˜is a constant depending on the order of fractional derivative. Numerical computations are presented, which confirm the theoretical results when the equation has a linear source term. When the equation has a nonlinear source term, numerical results show that the diffusivity depends on the order of fractional derivative as we expect.


2018 ◽  
Vol 23 (4) ◽  
pp. 53 ◽  
Author(s):  
Amaneh Sepahvandzadeh ◽  
Bahman Ghazanfari ◽  
Nader Asadian

The present study aimed at solving the stochastic generalized fractional diffusion equation (SGFDE) by means of the random finite difference method (FDM). Moreover, the conditions of mean square convergence of the numerical solution are studied and numerical examples are presented to demonstrate the validity and accuracy of the method.


2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Zhousheng Ruan ◽  
Zewen Wang ◽  
Wen Zhang

We study a backward problem for a time-fractional diffusion equation, which is formulated into a regularized optimization problem. After solving a sequence of well-posed direct problems by the finite element method, a directly numerical algorithm is proposed for solving the regularized optimization problem. In order to obtain a reasonable regularization solution, we utilize the discrepancy principle with decreasing geometric sequence to choose regularization parameters. One- and two-dimensional examples are given to verify the efficiency and stability of the proposed method.


Sign in / Sign up

Export Citation Format

Share Document