Multiple Objects Tracking Based on Linear Fitting

2014 ◽  
Vol 602-605 ◽  
pp. 1438-1441
Author(s):  
Dong Mei Li ◽  
Tao Li ◽  
Tao Xiang ◽  
Wei Xu

For multiple objects tracking in complex scenes, a new tracking algorithm based on linear fitting for multiple moving objects is proposed. DG_CENTRIST feature and color feature are combined to describe the object, and the overlapping ratio of the tracking object is calculated. The object in the current frame is measured by using coincidence degree. If there is occlusion, we predict the path of each object by linear fitting and adjust the results of tracking in order to get correct results. The experiment results show that this method can effectively improve the accuracy of the multiple target tracking.

2014 ◽  
Vol 945-949 ◽  
pp. 1869-1874
Author(s):  
Dong Mei Li ◽  
Tao Li

For multiple objects tracking in complex scenes, this paper proposes a new tracking algorithm for multiple moving objects. The algorithm makes likelihood calculation by using new DG_CENTRIST feature and color feature, and then calculates the overlapping ratio of the tracking object and the object in the current frame using coincidence degree to measure the occlusion. The algorithm has good robustness and stability, and the experiment results show that this method can effectively improve the accuracy of the multiple target tracking.


2018 ◽  
Vol 152 ◽  
pp. 03001
Author(s):  
Yun Zhe Cheong ◽  
Wei Jen Chew

Object tracking is a computer vision field that involves identifying and tracking either a single or multiple objects in an environment. This is extremely useful to help observe the movements of the target object like people in the street or cars on the road. However, a common issue with tracking an object in an environment with many moving objects is occlusion. Occlusion can cause the system to lose track of the object being tracked or after overlapping, the wrong object will be tracked instead. In this paper, a system that is able to correctly track occluded objects is proposed. This system includes algorithms such as foreground object segmentation, colour tracking, object specification and occlusion handling. An input video is input to the system and every single frame of the video is analysed. The foreground objects are segmented with object segmentation algorithm and tracked with the colour tracking algorithm. An ID is assigned to each tracked object. Results obtained shows that the proposed system is able to continuously track an object and maintain the correct identity even after is has been occluded by another object.


2016 ◽  
Vol 11 (4) ◽  
pp. 324
Author(s):  
Nor Nadirah Abdul Aziz ◽  
Yasir Mohd Mustafah ◽  
Amelia Wong Azman ◽  
Amir Akramin Shafie ◽  
Muhammad Izad Yusoff ◽  
...  

Author(s):  
Wei Huang ◽  
Xiaoshu Zhou ◽  
Mingchao Dong ◽  
Huaiyu Xu

AbstractRobust and high-performance visual multi-object tracking is a big challenge in computer vision, especially in a drone scenario. In this paper, an online Multi-Object Tracking (MOT) approach in the UAV system is proposed to handle small target detections and class imbalance challenges, which integrates the merits of deep high-resolution representation network and data association method in a unified framework. Specifically, while applying tracking-by-detection architecture to our tracking framework, a Hierarchical Deep High-resolution network (HDHNet) is proposed, which encourages the model to handle different types and scales of targets, and extract more effective and comprehensive features during online learning. After that, the extracted features are fed into different prediction networks for interesting targets recognition. Besides, an adjustable fusion loss function is proposed by combining focal loss and GIoU loss to solve the problems of class imbalance and hard samples. During the tracking process, these detection results are applied to an improved DeepSORT MOT algorithm in each frame, which is available to make full use of the target appearance features to match one by one on a practical basis. The experimental results on the VisDrone2019 MOT benchmark show that the proposed UAV MOT system achieves the highest accuracy and the best robustness compared with state-of-the-art methods.


Sensors ◽  
2021 ◽  
Vol 21 (5) ◽  
pp. 1919
Author(s):  
Shuhua Liu ◽  
Huixin Xu ◽  
Qi Li ◽  
Fei Zhang ◽  
Kun Hou

With the aim to solve issues of robot object recognition in complex scenes, this paper proposes an object recognition method based on scene text reading. The proposed method simulates human-like behavior and accurately identifies objects with texts through careful reading. First, deep learning models with high accuracy are adopted to detect and recognize text in multi-view. Second, datasets including 102,000 Chinese and English scene text images and their inverse are generated. The F-measure of text detection is improved by 0.4% and the recognition accuracy is improved by 1.26% because the model is trained by these two datasets. Finally, a robot object recognition method is proposed based on the scene text reading. The robot detects and recognizes texts in the image and then stores the recognition results in a text file. When the user gives the robot a fetching instruction, the robot searches for corresponding keywords from the text files and achieves the confidence of multiple objects in the scene image. Then, the object with the maximum confidence is selected as the target. The results show that the robot can accurately distinguish objects with arbitrary shape and category, and it can effectively solve the problem of object recognition in home environments.


Sign in / Sign up

Export Citation Format

Share Document