Galvanic-Cell-Based Synthesis and Photovoltaic Performance of ZnO-CdS Core-Shell Nanorod Arrays for Quantum Dots Sensitized Solar Cells

2014 ◽  
Vol 618 ◽  
pp. 64-68 ◽  
Author(s):  
Le Ha Chi ◽  
Pham Duy Long ◽  
Hoang Vu Chung ◽  
Do Thi Phuong ◽  
Do Xuan Mai ◽  
...  

Zinc oxide (ZnO) is recognized as one of the most attractive metal oxides because of its direct wide band gap (3.37 eV) and large exciton binding energy (60 meV), which make it promising for various applications in solar cells, gas sensors, photocatalysis and so on. Here, we report a facile synthesis to grow well-aligned ZnO nanorod arrays on SnO2: F (FTO) glass substrates without the ZnO seed layer using a Galvanic-cell-based method at low temperature (<100°C). CdS quantum dot thin films were then deposited on the nanorod arrays in turn by an effective successive ionic layer adsorption and reaction (SILAR) process to form a ZnO/CdS core-shell structure electrode. Structural, morphological and optical properties of the ZnO/CdS nanorod heterojunctions were investigated. The results indicate that CdS quantum dot thin films were uniformly deposited on the ZnO nanorods and the thickness of the CdS shell can be controlled by varying the number of the adsorption and reaction cycles. The number of quantum dots layers affects on photovoltaic performance of the ZnO/CdS core-shell nanorod arrays has been investigated as photoanodes in quantum dots sensitized solar cells.

2020 ◽  
Vol 110 ◽  
pp. 110535 ◽  
Author(s):  
Ping Huang ◽  
Shunjian Xu ◽  
Meng Zhang ◽  
Wei Zhong ◽  
Zonghu Xiao ◽  
...  

2019 ◽  
Vol 12 (01) ◽  
pp. 1850090
Author(s):  
Zhou Liu ◽  
Zhuoyin Peng ◽  
Jianlin Chen ◽  
Wei Li ◽  
Jian Chen ◽  
...  

Cu2GeSe3 quantum dot is introduced to instead of non-toxic CuInSe2 as a sensitizer for solar cells, which is employed to enhance the photovoltaic performance. Cu2GeSe3 quantum dots with various sizes are prepared by thermolysis process, which are employed for the fabrication of quantum dot-sensitized solar cells (QDSSC) according to assembly linking process. The optical absorption properties of the Cu2GeSe3 quantum dot-sensitized photo-electrodes have been obviously enhanced by the size optimization of quantum dots, which are better than that of CuInSe2-based photo-electrodes. Due to the balance on the deposition quantity and charge transfer property of the quantum dots, 3.9[Formula: see text]nm-sized Cu2GeSe3 QDSSC exhibits the highest current density value and incident photon conversion efficiency response, which result in a higher photovoltaic conversion efficiency than that of CuInSe2 QDSSC. The modulation of Cu2GeSe3 QDs will further improve the performance of photovoltaic devices.


2020 ◽  
Vol 2 (1) ◽  
pp. 286-295 ◽  
Author(s):  
M. Kamruzzaman

ZnO nanorod (NR) based inorganic quantum dot sensitized solar cells have gained tremendous attention for use in next generation solar cells.


2017 ◽  
Vol 43 (13) ◽  
pp. 10052-10056 ◽  
Author(s):  
Zhengguo Zhang ◽  
Chengwu Shi ◽  
Guannan Xiao ◽  
Kai Lv ◽  
Chengfeng Ma ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document