Performance Analysis and Control of Double Fed Induction Generator Using Modified Direct Power Control Scheme during Nonlinear Loading

2014 ◽  
Vol 626 ◽  
pp. 172-176
Author(s):  
I. Andrew Xavier Raj ◽  
S.C. Prasanna ◽  
P. Sivakumar

Renewable energy resources has given rise to the systems that transmit and distribute electricity. Recent developments in the wind energy as distribution generation systems in the distribution networks is gaining popularity as a new sources of energy. The integration of renewable energy in to the power system causes severe challenges for the control and protection of the distributed system. A careful operation and design of distribution systems with renewable energy resources should be carried out. This paper describes the dynamic modeling and simulation results of DFIG wind turbine during nonlinear loading. During nonlinear loading the overall performance gets considerably degraded due to the effect of negative sequence component and also the power produced by the DFIG gets considerably derated. To eliminate this effect a suitable control technique should be applied. Direct Power Control (DPC) scheme is implemented along with Proportional Integral (PI) controller. The DPC directly controls the Stator active and reactive powers, while the PI controllers is used to regulate the positive and negative sequence component. The proposed DPC-PI control strategy is verified by the simulation results during nonlinear loading. The models have been developed by means of MATLAB/SIMULINK software.

2013 ◽  
Vol 385-386 ◽  
pp. 1216-1219
Author(s):  
Yun Liang Wang ◽  
Yong Le Zhao

This paper presents fixed switching frequency direct power control (FSF-DPC) for three-phase AC/DC converter. Sensorless control strategies based on virtual-flux can optimize the performance of the system. In this paper, realization of pulse width modulation method for FSF-DPC is presented. The simulation results show that the system running performance is good.


2018 ◽  
Vol 29 (3) ◽  
pp. e2766 ◽  
Author(s):  
Mohamed Amine Djema ◽  
Mohamed Boudour ◽  
Kodjo Agbossou ◽  
Alben Cardenas ◽  
Mamadou Lamine Doumbia

2014 ◽  
Vol 573 ◽  
pp. 346-351
Author(s):  
G.S. Satheesh Kumar ◽  
Chinnadurai Nagarajan ◽  
M. Lizzy Nesa Bagyam

A Recent concept of distribution infrastructure plays a vital role in the efficient utilization of energy. To avoid global warming and greenhouse gas emission, carbon based power plant should be replaced with distributed renewable energy (DRE) such as wind, solar etc. Renewable energy resources can be integrated to grid by intelligent electronic devices (IED). This paper deals with the novel automation architecture that supports power distribution systems to avoid power blackout and also it briefs the major requirement of the smart grid distribution system needed for a competitive world. International standard IEC 61850 and IEC 61499 provides a solution for substation automation through intelligent logical nodes (ILNs) which enhances interoperability and configurability.Later an open source platform is used for enhancing the communication that automatically generates the data model and communication nodes for intelligent electronic devices.However for future requirements in smart grid, the addition of new functions as well as the adaptation of function for IEDs is necessary. A concept of reconfigurable software architecture is introduced for integrating distributed and renewable energy resources. Such interfaces and services provide adaptation of the functional structure and contribute efficient Smart Grid system. This survey summarizes the communication infrastructure of smart energy system.


Sign in / Sign up

Export Citation Format

Share Document