scholarly journals Faulted Section Identification Method in The Distribution Systems with Renewable Energy Resources

2014 ◽  
Vol 63 (10) ◽  
pp. 1321-1327 ◽  
Author(s):  
Han-Seong Lee ◽  
Cheol-Woo Jeon ◽  
Young-Kook Kim ◽  
Seong-Il Lim
2014 ◽  
Vol 573 ◽  
pp. 346-351
Author(s):  
G.S. Satheesh Kumar ◽  
Chinnadurai Nagarajan ◽  
M. Lizzy Nesa Bagyam

A Recent concept of distribution infrastructure plays a vital role in the efficient utilization of energy. To avoid global warming and greenhouse gas emission, carbon based power plant should be replaced with distributed renewable energy (DRE) such as wind, solar etc. Renewable energy resources can be integrated to grid by intelligent electronic devices (IED). This paper deals with the novel automation architecture that supports power distribution systems to avoid power blackout and also it briefs the major requirement of the smart grid distribution system needed for a competitive world. International standard IEC 61850 and IEC 61499 provides a solution for substation automation through intelligent logical nodes (ILNs) which enhances interoperability and configurability.Later an open source platform is used for enhancing the communication that automatically generates the data model and communication nodes for intelligent electronic devices.However for future requirements in smart grid, the addition of new functions as well as the adaptation of function for IEDs is necessary. A concept of reconfigurable software architecture is introduced for integrating distributed and renewable energy resources. Such interfaces and services provide adaptation of the functional structure and contribute efficient Smart Grid system. This survey summarizes the communication infrastructure of smart energy system.


Author(s):  
Srujana Vungarala

Blockchain is the nascent technology which has the capability of incorruptible future in making. The blockchain mechanism is regarded for its security. In recent years, many have adopted for Blockchain. This paper tries to analyze some of the game changing technologies using blockchain mechanism. The paper has been framed by using secondary research and the authors’ opinion is also voiced.Blockchain-based application are springing up, covering numerous fields including financial services, Internet of Things (IoT), and Energy distribution systems Smart Grids uses blockchain to control the flow of energy. Blockchain, the foundation of Bitcoin, has received extensive attentions recently. Blockchain serves as an immutable ledger which allows transactions take place in a decentralized manner. Blockchain-Based Smart Grids presents emerging applications of blockchain in electrical system. As, Rapid growth of renewable energy resources in power systems we require a system through which we can monitor the consumption and supply of the electricity. This is sustainable and eco-friendly alternative. This paper is tailored to analyze the blockchain applications in Bitcoin and Smart Grid.


2012 ◽  
Vol 3 (4) ◽  
pp. 2028-2038 ◽  
Author(s):  
Hilary E. Brown ◽  
Siddharth Suryanarayanan ◽  
Sudarshan A. Natarajan ◽  
Sanjay Rajopadhye

2014 ◽  
Vol 626 ◽  
pp. 172-176
Author(s):  
I. Andrew Xavier Raj ◽  
S.C. Prasanna ◽  
P. Sivakumar

Renewable energy resources has given rise to the systems that transmit and distribute electricity. Recent developments in the wind energy as distribution generation systems in the distribution networks is gaining popularity as a new sources of energy. The integration of renewable energy in to the power system causes severe challenges for the control and protection of the distributed system. A careful operation and design of distribution systems with renewable energy resources should be carried out. This paper describes the dynamic modeling and simulation results of DFIG wind turbine during nonlinear loading. During nonlinear loading the overall performance gets considerably degraded due to the effect of negative sequence component and also the power produced by the DFIG gets considerably derated. To eliminate this effect a suitable control technique should be applied. Direct Power Control (DPC) scheme is implemented along with Proportional Integral (PI) controller. The DPC directly controls the Stator active and reactive powers, while the PI controllers is used to regulate the positive and negative sequence component. The proposed DPC-PI control strategy is verified by the simulation results during nonlinear loading. The models have been developed by means of MATLAB/SIMULINK software.


2021 ◽  
Author(s):  
Adnan Arapovic

With emerging concerns over climate change and the need for reduced greenhouse gas emissions, together with the growing awareness of the importance of the natural environment and the depletion of the earth's non-renewable energy resources, the generation of electricity from distributed renewable energy resource such as solar photovoltaic (PV) and wind energy has begun to expand at a rapid pace. Proliferation of convert-based distributed energy resources in distribution systems has introduced new challenges in determining the maximum possible fault currents that a power system must be able to withstand without being compromised. Therefore is is imperative to develop the mathematical and software simulation models that approximate the response of converter-based distributed energy resources during a fault on the transmission or distribution system in order to determine the fault current contributions to the electrical grid that a transmission or distribution utility needs to reflect in their connection impact assessments.


2021 ◽  
Author(s):  
Adnan Arapovic

With emerging concerns over climate change and the need for reduced greenhouse gas emissions, together with the growing awareness of the importance of the natural environment and the depletion of the earth's non-renewable energy resources, the generation of electricity from distributed renewable energy resource such as solar photovoltaic (PV) and wind energy has begun to expand at a rapid pace. Proliferation of convert-based distributed energy resources in distribution systems has introduced new challenges in determining the maximum possible fault currents that a power system must be able to withstand without being compromised. Therefore is is imperative to develop the mathematical and software simulation models that approximate the response of converter-based distributed energy resources during a fault on the transmission or distribution system in order to determine the fault current contributions to the electrical grid that a transmission or distribution utility needs to reflect in their connection impact assessments.


2019 ◽  
Vol 8 (4) ◽  
pp. 1884-1889

As the issue of global warming is worsening, the shift towards using renewable energy resources is becoming more of an obligation rather than an option. With the continual decline in the cost of distributed small and medium-scale renewables and government sponsored programs, the outlook of growth of these converter-based resources remain high. Renewable energy resources are connected at the end-user terminals, in close proximity to the load at the distribution network. Such connection in the locale brings perceived benefits of transmission loss reduction, increased energy efficiency and improved voltage regulation. Yet, distributed renewable generation have noticeable effects on system’s power quality. This paper investigates the impacts of distributed wind generation on the voltage sag of distribution systems. A systematic approach is constructed to capture voltage sag occurrence incidents, due to wind generation connected at distribution nodes, and trigger the dynamic voltage restorer (DVR) into active operation mode to rectify the voltage sag problem. A test feeder system is represented using MATLAB/Simulink with wind turbines connected at several nodes of the system. A model for the DVR is developed in Simulink. It was then integrated with the test feeder system. Simulation results show that the incorporation of increased proportions of wind generation into the distribution network may give rise to negative operating conflicts as far as the voltage sag is concerned. Results manifest that the DVR is capable of effective correction of the voltage sag, caused by a three phase short-circuit fault, in presence of high penetration levels of variable wind generation connected at disparate locations in the distribution network.


Sign in / Sign up

Export Citation Format

Share Document