Simplified Model of Flywheel Energy Storage as a Part of the Russky Island Power Network Type

2014 ◽  
Vol 698 ◽  
pp. 722-725 ◽  
Author(s):  
Olga Gorte ◽  
Mikhail Khmelik

Permanent magnet machine based on the flywheel energy system model is suggested. The results of the dynamic properties examination for the Russky Island power network with the use of MATLAB/Simulink/SymPowerSystems package is presented.

2022 ◽  
Vol 2160 (1) ◽  
pp. 012081
Author(s):  
Ning Bai ◽  
Yixue Liu ◽  
Xiaoxia Jiang ◽  
Shuangshuang Cui ◽  
Haipeng Li ◽  
...  

Abstract This paper takes the energy supply in the park as the research background, the integrated energy system as the research object and establishes the integrated energy system model including liquid air energy storage, distributed photovoltaic, gas turbines and other equipment. When the integrated energy system operates the mode of “ordering heat by power”, the heat wasted as high as 14.647MWh and the cold wasted as high as 24.13MWh. When the system is not equipped with LAES, the output power of the CCHP unit increases by 21MWh, the electricity purchase in power grid increases by 8.123MWh, the heat waste increases by 21.696MWh and the cold waste increases by 12.421MWh. When the integrated energy system operates the mode of [[CHECK_DOUBLEQUOT_ENT]] ordering power by heat ", heat energy of the system has been reasonably utilized. When the system is not equipped with LAES, the power output and heat of the CCHP unit in the system are the same, the thermal energy output results of the system are the same and the electricity purchased by the power grid increases by 32.14MWh.


Author(s):  
Joost N. P. van Stralen ◽  
Francesco Dalla Longa ◽  
Bert W. Daniëls ◽  
Koen E. L. Smekens ◽  
Bob van der Zwaan

2021 ◽  
pp. 100223
Author(s):  
Johannes Dock ◽  
Daniel Janz ◽  
Thomas Kienberger ◽  
Jakob Weiss ◽  
Aaron Marschnig

2021 ◽  
Author(s):  
Carla Cannone ◽  
Lucy Allington ◽  
Ioannis Pappis ◽  
Karla Cervantes Barron ◽  
Will Usher ◽  
...  

Abstract Energy system modelling can be used to assess the implications of different scenarios and support improved policymaking. However, access to data is often a barrier to energy system modelling, causing delays. Therefore, this article provides data that can be used to create a simple zero order energy system model for Paraguay, which can act as a starting point for further model development and scenario analysis. The data are collected entirely from publicly available and accessible sources, including the websites and databases of international organizations, journal articles, and existing modelling studies. This means that the dataset can be easily updated based on the latest available information or more detailed and accurate local data. These data were also used to calibrate a simple energy system model using the Open Source Energy Modelling System (OSeMOSYS) and three stylized scenarios (Fossil Future, Least Cost and Net Zero by 2050) for 2020–2050. The assumptions used and results of these scenarios are presented in the appendix as an illustrative example of what can be done with these data. This simple model can be adapted and further developed by in-country analysts and academics, providing a platform for future work.


2021 ◽  
Author(s):  
Carla Cannone ◽  
Lucy Allington ◽  
Ioannis Pappis ◽  
Karla Cervantes Barron ◽  
Will Usher ◽  
...  

Abstract Energy system modelling can be used to assess the implications of different scenarios and support improved policymaking. However, access to data is often a barrier to starting energy system modelling in developing countries, thereby causing delays. Therefore, this article provides data that can be used to create a simple zero order energy system model for Morocco, which can act as a starting point for further model development and scenario analysis. The data are collected entirely from publicly available and accessible sources, including the websites and databases of international organizations, journal articles, and existing modelling studies. This means that the dataset can be easily updated based on the latest available information or more detailed and accurate local data. These data were also used to calibrate a simple energy system model using the Open Source Energy Modelling System (OSeMOSYS) and two stylized scenarios (Fossil Future and Least Cost) for 2020–2050. The assumptions used and results of these scenarios are presented in the appendix as an illustrative example of what can be done with these data. This simple model can be adapted and further developed by in-country analysts and academics, providing a platform for future work.


2021 ◽  
Author(s):  
Carla Cannone ◽  
Lucy Allington ◽  
Ioannis Pappis ◽  
Karla Cervantes Barron ◽  
Will Usher ◽  
...  

Abstract Energy system modelling can be used to assess the implications of different scenarios and support improved policymaking. However, access to data is often a barrier to energy system modelling, causing delays. Therefore, this article provides data that can be used to create a simple zero order energy system model for Ecuador, which can act as a starting point for further model development and scenario analysis. The data are collected entirely from publicly available and accessible sources, including the websites and databases of international organizations, journal articles, and existing modelling studies. This means that the dataset can be easily updated based on the latest available information or more detailed and accurate local data. These data were also used to calibrate a simple energy system model using the Open Source Energy Modelling System (OSeMOSYS) and three stylized scenarios (Fossil Future, Least Cost and Net Zero by 2050) for 2020–2050. The assumptions used and results of these scenarios are presented in the appendix as an illustrative example of what can be done with these data. This simple model can be adapted and further developed by in-country analysts and academics, providing a platform for future work.


Sign in / Sign up

Export Citation Format

Share Document