Development of Adaptive Distance Relay for STATCOM Connected Transmission Line with Wavelet Transform and ANN

2014 ◽  
Vol 705 ◽  
pp. 237-242
Author(s):  
Ramchandra P. Hasabe ◽  
Anil P. Vaidya

A new scheme to enhance the solution of the problems associated with Transmission line protection with Statcom connected is presentedin this paper.Static Synchronous Compensator (STATCOM) is a shunt type FACTS device connected at the midpoint of the transmission line to maintain the voltage atdesired level by injecting/absorbing the reactive power. This connection affects the performance of distance protection relay during line faults. Thefault detectionis carried out byusingenergy of the detail coefficients of the phase signals and artificial neutral network algorithm used for fault distance location for all thetypes of faults for transmission line. For each type of fault separate neural network is prepared for finding out the fault location.

2018 ◽  
Vol 8 (5) ◽  
pp. 3332-3337
Author(s):  
N. M. Khoa ◽  
D. D. Tung

The impact of thyristor controlled series capacitor (TCSC) on distance protection relays in transmission lines is analyzed in this paper. Voltage and current data are measured and collected at the relay locations to calculate the apparent impedance seen by distance protection relays in the different operating modes of the TCSC connected to the line. Short-circuit faults which occur at different locations on the power transmission line are considered in order to locate the fault for the purpose of evaluating the impact of TCSC on the distance protection relay. Matlab/Simulink simulation software is used to model the power transmission line with two sources at the two ends. Voltage source, transmission line, TCSC, voltage and current measurement, and discrete Fourier transform (DFT) blocks are integrated into the model. Simulation results show the impact of TCSC on the distance protection relay and determine the apparent impedance and fault location in the line.


Author(s):  
Ngo Minh Khoa ◽  
Nguyen Huu Hieu ◽  
Dinh Thanh Viet

<p>This paper focuses on analyzing and evaluating impact of a Static Var Compensator (SVC) on the measured impedance at distance protection relay location on power transmission lines. The measured impedance at the relay location when a fault occurs on the line is determined by using voltage and current signals from voltage and current transformers at the relay and the type of fault occurred on the line. The MHO characteristic is applied to analyze impact of SVC on the distance protection relay. Based on the theory, the authors in this paper develop a simulation program on Matlab/Simulink software to analyze impact of SVC on the distance protection relay. In the power system model, it is supposed that the SVC is located at mid-point of the transmission line to study impact of SVC on the distance relay. The simulation results show that SVC will impact on the measured impedance at the relay when the fault occurs after the location of the SVC on the power transmission line.</p>


2019 ◽  
Vol 8 (3) ◽  
pp. 4328-4333

Distance protection is simple and it provides fast response to clear the fault. Distance protection is also providing primary and remote backup function depending upon distance of transmission line. Distance protection uses various relays like mho relay/admittance relay, impedance relay and reactance relay. In power transmission system, Flexible AC Transmission System (FACTS) controllers are used to increase power transfer capability and reactive power control, but distance relay get affected due to presence of FACTS devices. This may create the stability issues, security and it may affect on voltage profile. The changes in impedance level would affect the accuracy of distance protection. This paper represents the effect of TCSC on operation of mho relay in transmission line. The work presented here emphasis on the interaction of TCSC on distance protection and their performances under different condition i.e., load angle variation, variation of SCL, different fault location. Design and control performance of MHO relay during normal operation as well as during variation in different condition is verified by using PSCAD simulation software.


2008 ◽  
Vol 23 (4) ◽  
pp. 1795-1804 ◽  
Author(s):  
Z.Y. Xu ◽  
S.F. Huang ◽  
L. Ran ◽  
J.F. Liu ◽  
Y.L. Qin ◽  
...  

2018 ◽  
Vol 8 (3) ◽  
pp. 2975-2980
Author(s):  
K. H. Le ◽  
P. H. Vu

This paper presents an application of a certain distance protection relay with a quadrilateral characteristic approach for the protection of the 110kV Duy Xuyen - Thang Binh transmission line in Vietnam using measured data from one terminal line. We propose the building process of a Matlab Simulink model for this relay that combines fault detection and classification block, apparent impedance calculation block for all types of faults and a trip logic block of three zone protection coordination. The proposed relay model is further tested using various fault scenarios on the transmission line. It is important to assess what happened, the actual conditions, the causes of mal-operation etc. Detailed explanation and results indicate that the proposed model behavior will help users to perform tests which correctly simulate real-world conditions besides that it properly interprets test results and troubleshoot distance function problems when results are not as expected.


Author(s):  
Mrunalini M. Rao ◽  
P.M. Deoghare

The two most important expected objectives of the transmission line protection are – 1) Differentiating the internal faults from external faults and 2) identifying exactly the fault type using one end data only. In conventional distance protection scheme only 80 percent of line length gets primary protection while for remaining 20 percent of line length a time delay is provided to avoid maloperation due to overreach in case of D.C. offset. In this new scheme a fault generated transients based protection method is introduced by which the whole line length gets primary protection by using the concept of bus capacitance. This scheme implements improved solution based on wavelet transform and self-organized neural network. The measured current and voltage signals are preprocessed first and then decomposed using wavelet multiresolution analysis to obtain the high frequency and low frequency information. The training patterns are formed based on high frequency signal components and the low frequency components of all three phase voltages and current. Zero sequence voltage and current are also used to identify faults involving grounds. The input sets formed based on the high frequency components are arranged as inputs of neural network-1, whose task is to indicate whether the fault is internal or external. The input sets formed based on the low frequency components are arranged as inputs of neural network- 2, whose task is indicate the type of fault. The new method uses both low and high frequency information of the fault signal to achieve an advanced transmission line protection scheme.


Sign in / Sign up

Export Citation Format

Share Document