Ionic Conduction Mechanism of Solid Biodegradable Polymer Electrolytes Based Carboxymethyl Cellulose Doped Ammonium Thiocyanate

2015 ◽  
Vol 719-720 ◽  
pp. 114-118 ◽  
Author(s):  
M.I.N. Isa ◽  
Noor Azniza Mohd Noor

A conducting solid biodegradable polymer electrolytes based carboxymethyl cellulose (CMC) doped ammonium thiocyanate (NH4SCN) system with concentration in the range 0 – 25 wt.% of NH4SCN have been prepared via solution casting method. The impedance study of CMC-NH4SCN system was measured via Electrical Impedance Spectroscopy (EIS) in the temperature range 303 K – 353 K. The highest ionic conductivity at room temperature (303 K) is 6.48 x 10-5Scm-1for sample containing 25 wt.% NH4SCN. The temperature dependence of CMC-NH4SCN system was found to obey the Arrhenius behaviour where the ionic conductivity increases with increase of temperature. Dielectric data were analyzed using complex permittivity, Ɛifor sample with the highest ionic conductivity at various temperatures and found was non Debye behavior. The conduction mechanism of the charge carrier of CMC-NH4SCN system can be presented by quantum mechanical tunneling (QMT) model.

2015 ◽  
Vol 1107 ◽  
pp. 230-235 ◽  
Author(s):  
N.A.M. Noor ◽  
M.I.N. Isa

In this work, solid biopolymer electrolytes (SBE) containing carboxymethyl cellulose (CMC) doped with ammonium thiocyanate (NH4SCN) were prepared via solution casting method. The ionic conductivity and dielectric properties of CMC-NH4SCN system were investigated by electrical impedance spectroscopy in the temperature range of 303-353 K. The dc conductivity shows that the highest ionic conductivity of 6.48 x 10-5 Scm-1 at ambient temperature was obtained when 25 wt.% of NH4SCN was incorporated. The temperature dependence of ionic conductivity revealed that CMC-NH4SCN system was discovered to obey Arrhenius law where the regression value is almost unity (R2≈1). Activation energy of CMC-NH4SCN system was found to decrease with the increment of NH4SCN concentration. The dielectric behaviour of the CMC-NH4SCN system have been analyzed using dielectric permittivity (ε*) and electrical modulus (M*) spectra. Results from dielectric studies showed a non-Debye behaviour of CMC-NH4SCN system.


2016 ◽  
Vol 78 (6-5) ◽  
Author(s):  
A. S. Samsudin ◽  
M. I. N. Isa

This paper present the development of plasticized solid bio-electrolytes (PSBs) which has been accomplished by incorporating various composition of plasticizer namely ethylene carbonate (EC) with carboxy methylcellulose doped NH4Br via solution casting method. The plasticized polymer–salt ionic conduction of PSBs has been analyzed by electrical impedance spectroscopy. Plasticization using EC in PSBs system assists the enhancement of NH4Br dissociation and therefore increases the protonation process in the system. The highest ionic conductivity obtained for CMC−NH4Br containing with 25 wt. % NH4Br was achieved at 1.12 x 10-4 Scm-1 and improved to 3.31 x 10-3 Scm-1 when EC was added in PSBs system. The ionic conductivity-temperature for PSBs system was found to obey the Arrhenius relationships where the ionic conductivity increases with temperature. The solid-state proton batteries were assembled with the formation of Zn + ZnSO4.7H2O || highest conducting PSBs system || MnO2 and achieve with a maximum open circuit voltage (OCV) of 1.48 V at room temperature and showed good in rechargeablity performance with more than 10 cycles.


2020 ◽  
Vol 20 (2) ◽  
Author(s):  
Qolby Sabrina ◽  
Titik Lestariningsih ◽  
Christin Rina Ratri ◽  
Achmad Subhan

Solid polymer electrolyte (SPE) appropriate to solve packaging leakage and expansion volume in lithium-ion battery systems. Evaluation of electrochemical performance of SPE consisted of mixture lithium salt, solid plasticizer, and polymer precursor with different ratio. Impedance spectroscopy was used to investigate ionic conduction and dielectric response lithium bis(trifluoromethane)sulfony imide (LiTFSI) salt, and additive succinonitrile (SCN) plasticizer. The result showing enhanced high ionic conductivity. In half-cell configurations, wide electrochemical stability window of the SPE has been tested. Have stability window at room temperature, indicating great potential of SPE for application in lithium ion batteries. Additive SCN contribute to forming pores that make it easier for the li ion to move from the anode to the cathode and vice versa for better perform SPE. Pore of SPE has been charaterization with FE-SEM. Additive 5% w.t SCN shows the best ionic conductivity with 4.2 volt wide stability window and pretty much invisible pores.


2021 ◽  
Vol 12 (5) ◽  
pp. 6114-6123

Solid polymer electrolytes (SPEs) based carboxymethyl cellulose (CMC) with lithium perchlorate (LiClO4) were prepared via solution drop-cast technique. The CMC host is complexed by different concentrations of LiClO4 salt. SPEs were characterized by Electrochemical Impedance Spectroscopy (EIS) and Linear Sweep Voltammetry (LSV) in coin cells with lithium metal electrodes. EIS performed unique results based on various ionic conductivity values and dielectric properties. The higher ionic conductivity (1.32 × 10-5 S/cm) was obtained by SPEs 2 following by short-range ionic transport results based on dielectric properties depending on frequency. SPEs with LiClO4 addition are electrochemically stable over 2 V in lithium battery coin cells from LSV results.


2021 ◽  
Vol 133 (42) ◽  
pp. 22854-22859
Author(s):  
Xin He ◽  
Youxuan Ni ◽  
Yunpeng Hou ◽  
Yong Lu ◽  
Song Jin ◽  
...  

2013 ◽  
Vol 850-851 ◽  
pp. 300-303
Author(s):  
Guan Min Li

As part of the weak electrolyte, Multiphase Composite System’s structure is more complex. So the conductive electrolyte ion transport has some difficulty to understanding the mechanism. And the present study has not yet reached a consensus, but through the ion conduction mechanism in-depth research on polymer electrolytes Preparation of important guiding significance. Current theories include ionic conductivity effective medium theory (EMT), MN law, WFL equation, NE equation, dynamic bonding penetration model.


2013 ◽  
Vol 856 ◽  
pp. 118-122 ◽  
Author(s):  
A.S. Samsudin ◽  
M.I.N. Isa

Solid biopolymer electrolytes (SBE) comprising carboxymethyl cellulose (CMC) with NH4Br-EC were prepared by solution casting method. The samples were characterized by impedance spectroscopy (EIS) and sample containing 25wt. % of NH4Br exhibited the highest room temperature conductivity of 1.12 x 10-4S/cm for salted CMC based SBE system. The ionic conductivity increased to 3.31 x 10-3S/cm when 8 wt. % of ethylene carbonate (EC) was added to the highest conductivity. The conductivity-temperature of plasticized SBE system obeys the Arrhenius relation where the ionic conductivity increases with temperature. The influence of EC addition on unplasticized CMC based SBE was found to be dependent on the number and the mobility of the ions. This results revealed that the influence of plasticizer (EC) which was confirmed play the significant role in enhancement of ionic conductivity for SBE system.


2013 ◽  
Vol 802 ◽  
pp. 194-198 ◽  
Author(s):  
M.I.N. Isa ◽  
A. S. Samsudin

The present work deals with the findings on the ionic conduction behavior based on ethylene carbonate (EC) as plasticizer in carboxymethyl cellulose (CMC) – dodecyltrimethyl ammonium bromide (DTAB) for green polymer electrolytes (GPEs) that were prepared via solution casting technique. The highest ionic conductivity obtained for CMC-DTAB film was 7.72 x 10-4 S/cm and enhanced to 2.37 x 10-3 S/cm with addition 10wt. % of EC. The conductivity-temperature of GPEs system obeys the Arrhenius relation where the ionic conductivity increases with temperature. The temperature dependence of the power law exponent for plasticized CMC-DTAB based GPEs system follows the quantum mechanical tunneling (QMT) model for conduction mechanism.


2013 ◽  
Vol 802 ◽  
pp. 99-103 ◽  
Author(s):  
A. S. Samsudin ◽  
J.J.P. Tham ◽  
M.I.N. Isa

The increasing interest in green energy storage materials for electrochemical devices with the development of polymer as electrolytes candidate has attracted great attention recently. It can offer a number of high-value opportunities, provided that lower costs can be obtained besides environmental friendly. Due to this attention, the development of biodegradable polymer electrolytes (BPEs) has been accomplished in this work by incorporating various composition of dodecyltrimethyl ammonium bromide (DTAB) with carboxy methylcellulose (CMC) via solution casting method. The highest ionic conductivity of the BPEs obtained at room temperature is 7.72 x 10-4S cm-1. The solid-state battery were fabricated with the configuration of Zn + ZnSO4.7H2O | BPEs | MnO2for the highest conductivity. The open-circuit voltage (OCV) of the fabricated battery with the best performance is 1.33 V at ambient temperature. The performance of the battery at ambient and selected temperature is evaluated to ascertain the effective and viability of these BPEs in solid-state batteries.


Sign in / Sign up

Export Citation Format

Share Document