Numerical Simulation and Experimental Study on the Contact Pressure between Bipolar Plate and GDL in a PEM Fuel Cell

2015 ◽  
Vol 750 ◽  
pp. 220-225
Author(s):  
Xue Mei Han ◽  
Jin Zhu Tan ◽  
Yong Chang Liu ◽  
Peng Li ◽  
Long Pan

Both assembly force and temperature play an important role in the proton exchange membrane (PEM) fuel cell performance. In this paper, contact pressure between bipolar plate and gas diffusion layer (GDL) in a PEM fuel cell under various assembly forces and at different temperatures was studied numerically. Considering the coupling effects of assembly force and operating temperature on contact pressure, a three-dimensional finite element model of the PEM fuel cell was established and the contact pressure between the GDL and the bipolar plate was studied using commercial code ABAQUS. In order to verify the simulated results, the experimental study was conducted to investigate the contact pressure distribution between the bipolar plate and the GDL. The experimental results are in good agreement with the finite element method (FEM) results. The simulated and experimental results reveal that the contact pressure increased with the increase of assembly force and temperature. It is found that the contact pressure distribution between the bipolar plate and the GDL had the best uniformity under the applied torque of 3.0N·m and at the operating temperature of 80 °C in this work.

Author(s):  
Linfa Peng ◽  
Diankai Qiu ◽  
Peiyun Yi ◽  
Xinmin Lai

Contact pressure distribution between bipolar plate (BPP) and gas diffusion layer (GDL) has significant impact on performance and life time of proton exchange membrane (PEM) fuel cell. Most current studies for contact pressure prediction are based on finite-element analysis (FEA), requiring huge computation for the whole fuel cell assembly. Comparatively speaking, the more generalized and well-developed analytical methods are deficient in this field. The objective of this study is to propose a full-scale continuous equivalent model to predict GDL contact pressure effectively in the PEM fuel cell. Using the model, the nonuniform pressure distribution resulted from dimensional errors of metallic BPP and GDL could be obtained. First, a parameterized theoretical model of BPP/GDL assembly is established based on equivalent stiffness analysis of components, and definition methods of dimensional errors are proposed according to actual measurements and Monte Carlo simulation (MCS). Then, experiments are carried out to obtain the actual GDL contact pressure and the model results show good agreement with experimental results. At last, effects of dimensional errors are investigated. Acceptable assembly pressure for a given fuel cell is suggested based on the model. This model is helpful to understand the effect of the dimensional errors, and it also could be adopted to guide the manufacturing of BPP, GDL, and the assembling of PEM fuel cell.


2020 ◽  
Author(s):  
Zhiming Zhang ◽  
Jun Zhang ◽  
Yapeng Shang ◽  
Tong Zhang

Abstract The endplates are essential to assembly a large proton exchange membrane (PEM) fuel cell stack, whose deflection is negative to its uniform contact pressure distribution and large electrical contact resistance. The endplates with assembly clamping belts are proposed as an equivalent mechanical beam model consisting of elastic beam element with clamping forces. The deflection curve equations of endplates with 1 to 5 clamping belts are studied which allows investigating endplates deflection for uniform contact pressure distribution. Based on this equivalent mechanical model for fuel cell stack, the effects of the thicknesses of endplates, numbers and positions of clamping belts are discussed, and show the optimal thickness of endplate with different clamping belts, and moreover the optimal position of intermediate and outer clamping belts on the endplates. Finally, a three-dimensional finite element analysis (FEA) of a fuel cell stack clamping with steel belts and nonlinear contact elements is compared to what the equivalent mechanical beam model predicts. It is found that the presented model gives good prediction accuracy for the deflection behavior of endplates and the clamping force. Results showed that the equivalent mechanical modeling is effective and helpful for the design of a large fuel cell stack assembly.


2016 ◽  
Vol 41 (4) ◽  
pp. 3062-3071 ◽  
Author(s):  
E. Alizadeh ◽  
M.M. Barzegari ◽  
M. Momenifar ◽  
M. Ghadimi ◽  
S.H.M. Saadat

Author(s):  
Rajeev Madazhy ◽  
Sheril Mathews ◽  
Erik Howard

A novel design using 3 bolts for a self-energized seal connector is proposed for quick assembly applications. Contact pressure distribution on the surface of the seal ring during initial bolt-up and subsequent operating pressure is analyzed for 3″ and 10″ connectors using Finite Element Analysis. FEA is performed on a 3″ and 10″ ANSI RF flange assembly and contact pressure distribution on the RF gasket is compared with the tapered seal ring assemblies. Hydrostatic tests are carried out for the tapered seal and ANSI bolted connectors to evaluate maximum pressure at which leak occurs for both size assemblies.


1983 ◽  
Vol 11 (1) ◽  
pp. 50-63 ◽  
Author(s):  
J. T. Tielking

Abstract A finite element tire model, based on nonlinear shell of revolution elements, has been developed to investigate tire-pavement interaction. The basic characteristics of this relatively comprehensive model are reviewed here, with attention focused on its ability to calculate the effect of tire design variables on tire performance data. A four-ply bias tire is used to show the ability of the model to predict the different effects that nylon and polyester cords have on tire deformation, contact pressure distribution, and traction.


1999 ◽  
Vol 122 (4) ◽  
pp. 781-789
Author(s):  
L. B. Shulkin ◽  
D. A. Mendelsohn ◽  
G. L. Kinzel ◽  
T. Altan

Many manufacturing situations involve a finite thickness plate or layer of material which is pressed against a much thicker foundation of the same or different material. One key example is a blank holder (plate) pressed against a die (foundation) in a sheet metal forming operation. In designing such a plate/foundation system the design objective often involves the contact stress distribution between the plate and foundation and the design variables are typically the thickness and modulus of the plate, the stiffness of the foundation and the applied pressure distribution on the noncontacting side of the plate. In general the problem relating the variables to the contact pressure distribution is three-dimensional and requires a complex finite element or boundary element solution. However, if the applied pressure distribution consists of sufficiently localized patches, which is often the case in applications, then an approximate 3D solution can be constructed by superposition. Specifically, the paper provides a convenient calculation procedure for the contact pressure due to a single circular patch of applied pressure on an infinite, isotropic, elastic layer which rests on a Winkler foundation. The procedure is validated by using known analytical solutions and the finite element method (FEM). Next a sensitivity study is presented for ascertaining the validity of the solution’s use in constructing solutions to practical problems involving multiple patches of loading. This is accomplished through a parametric study of the effects of loading radius, layer thickness, layer elastic properties, foundation stiffness and the form of the applied pressure distribution on the magnitude and extent of the contact pressure distribution. Finally, a procedure for determining an appropriate Winkler stiffness parameter for a foundation is presented. [S1087-1357(00)00603-1]


Sign in / Sign up

Export Citation Format

Share Document