Uncertainty in Product Modelling within the Development Process

2015 ◽  
Vol 807 ◽  
pp. 89-98 ◽  
Author(s):  
Jan Würtenberger ◽  
Sebastian Gramlich ◽  
Tillmann Freund ◽  
Julian Lotz ◽  
Maximilian Zocholl ◽  
...  

This paper gives an overview about how to locate uncertainty in product modelling within the development process. Therefore, the process of product modelling is systematized with the help of characteristics of product models and typical working steps to develop a product model. Based on that, it is possible to distinguish between product modelling uncertainty, mathematic modelling uncertainty, parameter uncertainty, simulation uncertainty and product model uncertainty.

Author(s):  
David Inkermann

AbstractThe high interaction between process and product models in product development and systems engineering (SE) is common sense. However, most research in the field of model based systems engineering (MBSE) focusses of physical systems (hardware and software). The authors claim that this focus is a main reason for the low acceptance and high effort for implementation of SE and MBSE in industrial practice. Thus, this contribution aims at supporting an integrative analysis and synthesis of process and product models by introducing the concept and framework of Model-based Process Engineering. Based on established research this framework introduces three main systems, namely the system of processes, system of product models, and system of tools to describe complex product development. The main contribution of this work is a preliminary concept to structure and link the systems of processes and product models. Besides form the description of the main relations between the systems an integrated modelling concept to represent links between the process and product model system is proposed.


2021 ◽  
Vol 1 ◽  
pp. 3369-3378
Author(s):  
Stephan Husung ◽  
Christian Weber ◽  
Atif Mahboob ◽  
Sven Kleiner

AbstractModel-Based Systems Engineering (MBSE) is an efficient approach to support product development in order to meet today's challenges. The MBSE approach includes methods and, above all, modelling approaches of the technical system with the aim of continuous use in development. The objective of this paper is to use the potential of the MBSE models and to show the added value of such models on the system level when used as a single source. With this objective, this paper presents a three-step approach to systematically identify and apply meaningful modelling approaches within MBSE, based on the needs during the development process. Furthermore, an FMEA example is included in this paper to elaborate the use of MBSE in the system failure analysis.


2002 ◽  
Vol 44 (3) ◽  
Author(s):  
Andreas Rau

Die Automobilindustrie ist momentan im Begriff, einen neuen Ansatz für die Entwicklung eingebetteter Systeme zu übernehmen. Dieser Ansatz basiert auf neuen Modellierungs- und Simulationswerkzeugen, die einen nahtlosen Prozess von der ersten Idee bis zur Serie durch schrittweise Verfeinerung eines Modells und Implementierung mittels automatischer Codegenerierung versprechen. Jedoch müssen einige Details dieses Prozesses erst noch definiert werden. Dabei sollten Erfahrungen und erprobte Techniken aus traditionellen Softwareentwicklungsprozessen berücksichtigt werden. Zum Beispiel kann durch Zusicherungen das Modell abgesichert und seine Tiefe und Qualität verbessert werden. Solche Prüfungen können sowohl in der Simulation als auch zur Codegenerierung für die Zielumgebung verwendet werden. Dies führt zu einer erhöhten Zuverlässigkeit des Endprodukts und stellt au3erdem eine Grobverifikation des verwendeten Codegenerators dar. Der vorliegende Artikel beschreibt Konzept und Anforderungen für solche modellbasierten Prüfungen und ihren praktischen Einsatz mit SIMULINK-Modellen.


Author(s):  
Adarsh Venkiteswaran ◽  
Sayed Mohammad Hejazi ◽  
Deepanjan Biswas ◽  
Jami J. Shah ◽  
Joseph K. Davidson

Industries are continuously trying to improve the time to market through automation and optimization of existing product development processes. Large companies vow to save significant time and resources through seamless communication of data between design, manufacturing, supply chain and quality assurance teams. In this context, Model Based Definition/Engineering (MBD) / (MBE) has gained popularity, particularly in its effort to replace traditional engineering drawings and documentations with a unified digital product model in a multi-disciplinary environment. Widely used 3D data exchange models (STEP AP 203, 214) contains mere shape information, which does not provide much value for reuse in downstream manufacturing applications. However, the latest STEP AP 242 (ISO 10303-242) “Managed model based 3D engineering” aims to support smart manufacturing by capturing semantic Product Manufacturing Information (PMI) within the 3D model and also helping with long-term archival. As a primary, for interoperability of Geometric Dimensions & Tolerances (GD&T) through AP 242, CAx Implementor Forum has published a set of recommended practices for the implementation of a translator. In line with these recommendations, this paper discusses the implementation of an AP 203 to AP 242 translator by attaching semantic GD&T available in an in-house Constraint Tolerance Graph (CTF) file. Further, semantic GD&T data can be automatically consumed by downstream applications such as Computer Aided Process Planning (CAPP), Computer Aided Inspection (CAI), Computer Aided Tolerance Systems (CATS) and Coordinate Measuring Machines (CMM). Also, this paper will briefly touch base on the important elements that will constitute a comprehensive product data model for model-based interoperability.


2020 ◽  
Vol 76 (10) ◽  
pp. 912-925
Author(s):  
Thomas C. Terwilliger ◽  
Oleg V. Sobolev ◽  
Pavel V. Afonine ◽  
Paul D. Adams ◽  
Randy J. Read

Density modification uses expectations about features of a map such as a flat solvent and expected distributions of density in the region of the macromolecule to improve individual Fourier terms representing the map. This process transfers information from one part of a map to another and can improve the accuracy of a map. Here, the assumptions behind density modification for maps from electron cryomicroscopy are examined and a procedure is presented that allows the incorporation of model-based information. Density modification works best in cases where unfiltered, unmasked maps with clear boundaries between the macromolecule and solvent are visible, and where there is substantial noise in the map, both in the region of the macromolecule and the solvent. It also is most effective if the characteristics of the map are relatively constant within regions of the macromolecule and the solvent. Model-based information can be used to improve density modification, but model bias can in principle occur. Here, model bias is reduced by using ensemble models that allow an estimation of model uncertainty. A test of model bias is presented that suggests that even if the expected density in a region of a map is specified incorrectly by using an incorrect model, the incorrect expectations do not strongly affect the final map.


Author(s):  
Fei Gao ◽  
Dieter Roller

Abstract Capturing design process is becoming an important topic of feature-based modeling, as well as in product data exchange, concurrent design, and cooperative design. Three critical issues on the modeling of design process are considered in this paper, namely, feature concepts, feature evolution, and the semantic consistencies of the states of product models. A semantics-based product model is introduced to facilitate the description of both conceptual and detailed models, and to maintain the semantic consistencies of product states. The process is represented by feature states and their evolution records. Feature type variation and prototype-based design are proposed to support feature evolution. A conceptual description of the design process and an example are given.


2020 ◽  
Vol 7 (1) ◽  
pp. 107-127 ◽  
Author(s):  
Maral Goharzay ◽  
Ali Noorzad ◽  
Ahmadreza Mahboubi Ardakani ◽  
Mostafa Jalal

Abstract In this paper, an approach for soil liquefaction evaluation using probabilistic method based on the world-wide SPT databases has been presented. In this respect, the parameters’ uncertainties for liquefaction probability have been taken into account. A calibrated mapping function is developed using Bayes’ theorem in order to capture the failure probabilities in the absence of the knowledge of parameter uncertainty. The probability models provide a simple, but also efficient decision-making tool in engineering design to quantitatively assess the liquefaction triggering thresholds. Within an extended framework of the first-order reliability method considering uncertainties, the reliability indices are determined through a well-performed meta-heuristic optimization algorithm called hybrid particle swarm optimization and genetic algorithm to find the most accurate liquefaction probabilities. Finally, the effects of the level of parameter uncertainty on liquefaction probability, as well as the quantification of the limit state model uncertainty in order to incorporate the correct model uncertainty, are investigated in the context of probabilistic reliability analysis. The results gained from the presented probabilistic model and the available models in the literature show the fact that the developed approach can be a robust tool for engineering design and analysis of liquefaction as a natural disaster.


Author(s):  
Alexander Fürst ◽  
David Inkermann ◽  
Thomas Vietor

Pedestrians are among the most vulnerable participants in current city traffic. While in the past original equipment manufacturers (OEMs, in meanings of carmakers) mainly focused on passenger safety, nowadays strict legislation requirements call for the development of more effective pedestrian safety concepts. Considerations for constructive and technological road safety measures generally take place in a company-specific product development process, but mainly in phases, that do not allow for innovative products in terms of new solutions. Thus, the importance of early development phases as well as design process models, such as Pahl and Beitz, will be described here. Also the significance of the development design cases will be handled, as they can mainly influence the innovation degree of the resulting products. In the end an approach will be introduced, of how an analysis of product models regarding their possibilities for adequate evaluation can help, to support a safety-related development process by integrating suitable design methods and tools.


Sign in / Sign up

Export Citation Format

Share Document