passenger safety
Recently Published Documents


TOTAL DOCUMENTS

362
(FIVE YEARS 86)

H-INDEX

15
(FIVE YEARS 2)

10.6036/10215 ◽  
2022 ◽  
Vol 97 (1) ◽  
pp. 30-34
Author(s):  
Mónica Diez Marín ◽  
JULIO ABAJO ALONSO ◽  
ALBERTO NEGRO MARNE ◽  
SUSANA MARIA ESCALANTE CASTRODEZA ◽  
MARIA TERESA FERNANDEZ

Autonomous vehicles start to be introduced on our roads and will soon become a reality. Although fatal traffic accidents will be significantly reduced, remaining fatal passenger car crashes should be taken into account to ensure the safety of users. The new highly adaptable interior designs, with totally different layouts from the current ones, may significantly impact occupant safety, especially child passenger safety. Analyzing how these new vehicles affect child safety is a challenge that needs to be addressed. The "living room" layout (face-to-face seating position) is one of the preferences of families traveling with children. Young children need further support and supervision so the possibility of rotating seats to be able to be in front of the small children is a valuable feature for parents. Therefore, new seating orientations away from the forward facing position should be taken into account to ensure children protection. The objective of this study is to evaluate child occupant safety in a "living room" seating position (a possible option in full autonomous vehicles) versus the current forward facing position. Virtual testing methodology was used to perform this study. The virtual PIPER child human body model (HBM) was used. This model is one of the only HBMs developed and validated from child PMHS data (Paediatric Post-Mortem Human Surrogate). The two configurations were defined according with the EuroNCAP child occupant protection test protocol. It was found that the "living room" layout presents worse results according to the child's head injury patterns than in forward facing position. In conclusion, attending to the new seating orientations away from the forward facing position, it is necessary to adapt the restraint systems; otherwise children could suffer potentially dangerous situations.


2021 ◽  
Vol 6 (4) ◽  
Author(s):  
Paul T. Adeke ◽  
Kwaghgba Gbagir ◽  
Manasseh Tyogo

Following its outbreak in the Wuhan region of China, the spread of Corona Virus (COVID-19) across the world has threatened national and local authorities or policy makers and transport experts due to its effects on human mobility. This study investigated the transmissibility of COVID-19 among passengers in transit using public transport modes in Makurdi metropolis. Analytical simulation using stochastic search method called Genetic Algorithm (GA) technique was used to simulate the transmissibility of the infectious disease within enclosed spaces of transport modes based on layouts and capacities. The sum of arithmetic sequence was used as the objective function of individual arrivals in each mode, it was minimised to obtain optimum safe capacity. Capacities of public transport modes were subdivided into; Normal, Above Normal and Below Normal (50% of Normal). Findings of the experiments indicated that optimum safe capacity of minibuses, taxies, tricycles and motorcycles used in Makurdi metropolis were at 8, 3, 2 and 1 person respectively. This occurred at 50% capacity which agreed with findings of previous studies. An efficient and sustainable public transport policy framework was designed for policy makers and transport experts to help achieve safe travel and healthier living in Makurdi metropolis during the COVID-19 era. Keywords— COVID-19 transmission, Makurdi Metropolis, Modal Split, Mode capacity, Passenger Safety, Public Transport.


Author(s):  
Zawierucha Maciej ◽  
Monteiro Luciana Ribeiro ◽  
Schermer Wim ◽  
Vink Peter

YMER Digital ◽  
2021 ◽  
Vol 20 (12) ◽  
pp. 599-605
Author(s):  
B Ramesh ◽  
◽  
Altrin Rijo ◽  

The sudden accidents often occur when passengers traveling on the footpath of public transport at high speed. The sudden fall from footsteps at that speed may cause serious risk to passengers. In this paper, we present a passengers safety system that has two major features, one is to detect the passengers present in the footpath of the vehicle and the other one is to maintain the speed of the vehicle based on the detection of passengers in the footpath. The present work used IOT system that contains an ultrasonic sensor to detect passengers in a given area. Based on the sensor output of detection of passengers, the door of public transport will automatically open/close and also it will maintain or increase the speed of the bus based on the results. The development of this IOT system also implements an IEEE 802.11 technology to transmit the signal from public transport to mobile apps. The monitoring and controlling mobile application are developed which can receive/transmit the data from/to the controller of the system by using IEEE 802.11. This mobile application shows the status of detection of passengers, door status, and also the real-time speed of the public transport. Keywords – Passenger safety, IoT, Monitoring system, Wireless Communication.


2021 ◽  
Vol 2021 (2) ◽  
pp. 20-29
Author(s):  
Taras Postranskyy ◽  
◽  
Mykola Boikiv ◽  

Ensuring the transport process requires proper interaction of all parts of the system "driver - car - road - environment" and its subsystems. In this case, the driver is often a "weak" component of the system, and his actions can reduce the level of road users` safety. It should be noted that the reliability of the driver can be considered as the probability of his trouble-free and error-free operation, as well as the proper level of his regulatory mechanisms functioning. In this case, to analyze the activities and readiness of the driver for his professional activities, indicators of functional status are often used. Thus, the study of the "human factor" in the transport process is an important task to ensure the reliability of the whole transport system. Today the most of all transportation is carried out by road. The timeliness and safety of cargo delivery and passenger safety depend on the driver's actions. At the same time, the driver is influenced by a considerable number of external environmental factors during his work. One of the most important factors is the mountainous traffic conditions, which often have many changes in plan and the profile of roads. Another feature of such traffic conditions is the height above sea level, affecting the human body, particularly its functional state. Considering the above, the paper measures the heart rate variability of bus drivers moving on a route that was partly in the mountain's conditions. During the research, video recording and registration of the vehicle's geolocation were also carried out. This made it possible to establish indicators of the driver`s functional state in specific periods. After processing the obtained values, the influence of mountainous traffic conditions on the bus drivers` indicator of regulatory systems’ activity was established.


Author(s):  
Sadiqa Kendi ◽  
Uma D. Khemraj ◽  
Lindsay A. Thompson

2021 ◽  
Vol 9 ◽  
Author(s):  
Lance Robinson ◽  
Kevin Mearns ◽  
Tracey McKay

Airports stimulate tourism and trade and are a vital link in any country’s tourism infrastructure and economy. Large airports such as South Africa’s busiest airport, the OR Tambo International Airport, in Ekurhuleni, Gauteng, are usually located on the periphery of cities, usually on land that forms part of the peri-urban economy, reserved perhaps for farming or left undeveloped. As a result, such land often becomes a wildlife haven within the more “urbanized” or developed areas. Unfortunately, this places wildlife, especially birds on a collision course with aircraft. So much so that bird and other animal strikes cost the aviation industry millions of US dollars annually. Therefore, it is essential to reduce the number of wildlife strikes, not only lower the risk of damage to aircraft, increase passenger safety and reduce operational delays, but also prevent a decline in local wildlife populations. Thus, this paper argues that South Africa must improve its management of land-use close to airports to minimize the potential for wildlife strikes. In that regard, this study catalogs the different habitats and land-use types surrounding OR Tambo International Airport, identifying potential bird hazard zones using kernel density analysis. This identifies which areas pose the highest risk of bird strikes. Although land-use and land zoning by the International Civil Aviation Organization (ICAO) recommends a 13 km buffer zone around airports, this study shows that land-use in the buffer zone must also take potential bird strikes into account. Thus, airport operators need to work with land-use planning authorities and neighboring stakeholders to do so.


Author(s):  
Harish S ◽  
Krishna Anusha K ◽  
R. Jegadeeshwaran ◽  
G Sakthivel

Brake is one of the crucial elements in automobiles. If there is any malfunction in the brake system, it will adversely affect the entire system. This leads to tribulation on vehicle and passenger safety. Therefore the brake system has a major role to do in automobiles and hence it is necessary to monitor its functioning. In recent trends, vibration-based condition monitoring techniques are preferred for most condition monitoring systems. In the present study, the performance of various fault diagnosis models is tested for observing brake health. A real vehicle brake system was used for the experiments. A piezoelectric accelerometer is used to obtain the signals of vibration under various faulty cases of the brake system as well as good condition. Statistical parameters were extracted from the vibration signals and the suitable features are identified using the effect of the study of the combined features. Various versions of machine learning models are used for the feature classification study. The classification accuracy of such algorithms has been reported and discussed.


Author(s):  
Leif Sörensen ◽  
Jan Schlüter

AbstractThe rapidly growing city of Kigali has a bus network that is undergoing increased development as underlined in its Transport Master Plan. Two schemes of bus driver remuneration coexist in the city: One constitutes a hybrid salary and commission system, while the other pays a fixed monthly salary. This paper examines the effect of these differing compensation schemes on driver behavior in Kigali using survey data from 2019. The analysis applies linear models incorporating various aspects of driver behavior in a principal-agent framework. The results indicate that the performance-based compensation scheme is associated with higher per-trip passenger fluctuation and faster driving (possibly due to drivers aiming to accrue a higher income) compared to the fixed-wage system. Policy implications comprise the inclusion of further criteria in incentive contracts to internalize potential negative externalities on society, e.g., to hinder the endangerment of passenger safety by appropriately incentivizing drivers. In conclusion, bus drivers who are compensated by performance are more likely to alter their behavior, responding to the incentive scheme through several channels.


Sign in / Sign up

Export Citation Format

Share Document