scholarly journals Computer-aided SPT-based reliability model for probability of liquefaction using hybrid PSO and GA

2020 ◽  
Vol 7 (1) ◽  
pp. 107-127 ◽  
Author(s):  
Maral Goharzay ◽  
Ali Noorzad ◽  
Ahmadreza Mahboubi Ardakani ◽  
Mostafa Jalal

Abstract In this paper, an approach for soil liquefaction evaluation using probabilistic method based on the world-wide SPT databases has been presented. In this respect, the parameters’ uncertainties for liquefaction probability have been taken into account. A calibrated mapping function is developed using Bayes’ theorem in order to capture the failure probabilities in the absence of the knowledge of parameter uncertainty. The probability models provide a simple, but also efficient decision-making tool in engineering design to quantitatively assess the liquefaction triggering thresholds. Within an extended framework of the first-order reliability method considering uncertainties, the reliability indices are determined through a well-performed meta-heuristic optimization algorithm called hybrid particle swarm optimization and genetic algorithm to find the most accurate liquefaction probabilities. Finally, the effects of the level of parameter uncertainty on liquefaction probability, as well as the quantification of the limit state model uncertainty in order to incorporate the correct model uncertainty, are investigated in the context of probabilistic reliability analysis. The results gained from the presented probabilistic model and the available models in the literature show the fact that the developed approach can be a robust tool for engineering design and analysis of liquefaction as a natural disaster.

2013 ◽  
Vol 351-352 ◽  
pp. 1601-1604
Author(s):  
Wei Jiang ◽  
Da Gang Lu

An inverse first order reliability method (FORM) is presented to solve the safety factors for the in-plane creep stability of concrete filled steel tubular (CFST) arches. In the inverse analysis, the safety factors with or without considering the time-dependent behavior of concrete are introduced into limit state equations for the in-plane stability design of CFST arches. For different target reliability indices and steel ratios, the time-independent and time-dependent safety factors are solved. The results show that the inverse FORM is of good efficiency and applicability. The target reliability indices have little effect on the safety factors for the creep stability of CFST arches. The effects of steel ratios are significant which should be considered in design. For the commonly used steel ratios of CFST arches, the in-plane safety factors for creep stability range from 1.17 to 1.43.


Author(s):  
Yanjun Zhang ◽  
Mian Li

Uncertainty is inevitable in engineering design. The existence of uncertainty may change the optimality and/or the feasibility of the obtained optimal solutions. In simulation-based engineering design, uncertainty could have various types of sources, such as parameter uncertainty, model uncertainty, and other random errors. To deal with uncertainty, robust optimization (RO) algorithms are developed to find solutions which are not only optimal but also robust with respect to uncertainty. Parameter uncertainty has been taken care of by various RO approaches. While model uncertainty has been ignored in majority of existing RO algorithms with the hypothesis that the simulation model used could represent the real physical system perfectly. In the authors’ earlier work, a RO framework was proposed to consider both parameter and model uncertainties using the Bayesian approach with Gaussian processes (GP), where metamodeling uncertainty introduced by GP modeling is ignored by assuming the constructed GP model is accurate enough with sufficient training samples. However, infinite samples are impossible for real applications due to prohibitive time and/or computational cost. In this work, a new RO framework is proposed to deal with both parameter and model uncertainties using GP models but only with limited samples. The compound effect of parameter, model, and metamodeling uncertainties is derived with the form of the compound mean and variance to formulate the proposed RO approach. The proposed RO approach will reduce the risk for the obtained robust optimal designs considering parameter and model uncertainties becoming non-optimal and/or infeasible due to insufficiency of samples for GP modeling. Two test examples with different degrees of complexity are utilized to demonstrate the applicability and effectiveness of the proposed approach.


Geosciences ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 305
Author(s):  
Federico Vagnon ◽  
Sabrina Bonetto ◽  
Anna Maria Ferrero ◽  
John Paul Harrison ◽  
Gessica Umili

The Eurocode 7 or EC7 is the Reference Design Code (RDC) for geotechnical design including rock engineering design within the European Union (EU). Moreover, its principles have also been adopted by several other countries, becoming a key design standard for geotechnical engineering worldwide. It is founded on limit state design (LSD) concepts, and the reliability of design is provided mainly by a semi-probabilistic method based on partial factors. The use of partial factors is currently an advantage, mainly for the simplicity in its applicability, and a limitation, especially concerning geotechnical designs. In fact, the application of partial factors to geotechnical design has proven to be difficult. In this paper, the authors focus on the way to apply EC7 principles to rock engineering design by analyzing the design of rockfall protection structures as an example. A real case of slope subjected to rockfall is reported to outline the peculiarity connected to rock engineering. The main findings are related to the complementarity of the reliability-based design (RBD) approach within EC7 principles and the possibility of overcoming the limitations of a partial factor approach to this type of engineering problem.


2007 ◽  
Vol 353-358 ◽  
pp. 2561-2564
Author(s):  
Ouk Sub Lee ◽  
Dong Hyeok Kim

The reliability estimation of pipeline is performed in accordance with the probabilistic methods such as the FORM (first order reliability method) and the SORM (second order reliability method). A limit state function has been formulated with help of the FAD (failure assessment diagram). Various types of distribution of random variables are assumed to investigate its effect on the failure probability. It is noted that the failure probability increases with the increase of the dent depth, the operating pressure and the outside radius, and the decrease of the wall thickness. Furthermore it is found that the failure probability for the random variables having the Weibull distribution is larger than those of the normal and the lognormal distributions.


Author(s):  
Mohammed Jameel ◽  
Suhail Ahmad

Spar platform is a compliant floating structure used for exploration of oil and gas from deep sea. To ensure safe operations, reliability against mooring line failure is a major concern in design. Furthermore, the mooring lines have high investment costs and are normally not accessible for in-service inspection. The common approach for solving the dynamics of Spar system is to employ a decoupled quasi-static approach which ignores the platform and mooring lines interaction. Coupled analysis, used presently, considers the mooring lines and platform in an integrated single model. Hence, it effectively captures the damping effect due to Spar and mooring lines coupling. Finite element code ABAQUS is used to obtain the response of Spar-mooring system under long crested random sea with current. Limit state function is derived based on failure due to fatigue for probabilistic reliability assessment. Random variables, participating actively in the limit state function are identified and statistically modeled. The most probable points or the design points are found to be an effective parameter for estimating partial factors of safety for load and resistance variables. First Order Reliability Method (FORM) is used to calculate probability of failure and reliability indices. The results are later checked against Monte carlo simulation. Reliabilities of segmental length of mooring and of full length are determined as they may significantly differ if the mooring properties change along the length. Reliability indices of annual and life time sea states are calculated.


Author(s):  
Seyede Vahide Hashemi ◽  
Mahmoud Miri ◽  
Mohsen Rashki ◽  
Sadegh Etedali

This paper aims to carry out sensitivity analyses to study how the effect of each design variable on the performance of self-centering buckling restrained brace (SC-BRB) and the corresponding buckling restrained brace (BRB) without shape memory alloy (SMA) rods. Furthermore, the reliability analyses of BRB and SC-BRB are performed in this study. Considering the high computational cost of the simulation methods, three Meta-models including the Kriging, radial basis function (RBF), and polynomial response surface (PRSM) are utilized to construct the surrogate models. For this aim, the nonlinear dynamic analyses are conducted on both BRB and SC-BRB by using OpenSees software. The results showed that the SMA area, SMA length ratio, and BRB core area have the most effect on the failure probability of SC-BRB. It is concluded that Kriging-based Monte Carlo Simulation (MCS) gives the best performance to estimate the limit state function (LSF) of BRB and SC-BRB in the reliability analysis procedures. Considering the effects of changing the maximum cyclic loading on the failure probability computation and comparison of the failure probability for different LSFs, it is also found that the reliability indices of SC-BRB were always higher than the corresponding reliability indices determined for BRB which confirms the performance superiority of SC-BRB than BRB.


Author(s):  
Bowen Yang ◽  
Joshua S. Steelman ◽  
Jay A. Puckett ◽  
Daniel G. Linzell

Truck platooning—digitally linking two or more trucks to travel in a closely spaced convoy—is an emerging technology with the potential to save fuel and reduce labor. A framework is described to determine how much a platoon permit load might be increased above Federal Bridge Formula B legal limits, given strict control over the load characteristics and operational tactics. Soon, platoons are expected to advance not only with respect to traffic operations but also in their ability to weigh and report axle weight and spacing, functioning as mobile weigh-in-motion vehicles. Consequently, platoon live load statistics (bias and coefficient of variation) can differ from code assumptions, and are perhaps controllable, which poses a significant opportunity with respect to operational strategies. A parametric study is presented that examined safe headways between platooning trucks, considering different girder spacings, span lengths, numbers of spans, types of structure, truck configurations, numbers of trucks, and adjacent lane loading scenarios. The Strength I limit state was evaluated for steel and prestressed concrete I-girder bridges optimally designed using load and resistance factor design. Reliability indices, β, were calculated for each load case based on Monte Carlo simulation. Summary headway guidance was developed and is presented here to illustrate potential safe operational strategies for varying truck weights and platoon live load effect uncertainties.


2011 ◽  
Vol 52-54 ◽  
pp. 1752-1756
Author(s):  
Li Hong Chen ◽  
Yu Fei Zhao

The design and safety evaluation of a geotechnical project is influenced by the shear strength parameters of geo-material. Moment method and linear regression method are the mainly used methods to estimate the shear strength parameters. But moment method is always over estimate the variation of strength parameters due to the smaller sample size, meanwhile the conventional linear regression method cannot obtain the standard deviation. Base on the reliability theory, a new method employing Solver add-in of spreadsheet was developed to calculate the shear strength parameters. The method was simplified by the principle that the shortest distance form origin point to the limit state surface in the normalization space was the reliability index. Four hundred and four samples of direct shear tests of rock mass from many large hydraulic projects in China were analyzed by four statistic methods including the new proposed one. Comparing results of different methods indicated that the new reliability statistic method had good performance than the traditional ways.


2007 ◽  
Vol 345-346 ◽  
pp. 1393-1396
Author(s):  
Ouk Sub Lee ◽  
Man Jae Hur ◽  
Yeon Chang Park ◽  
Dong Hyeok Kim

It is well-known that the vibration significantly affect the life of solder joint. In this paper, the effects of the vibration on the failure probability of the solder joint are studied by using the failure probability models such as the First Order Reliability Method (FORM) and the Second Order Reliability Method (SORM). The accuracies of the results are estimated by a help of the Monte Carlo Simulation (MCS). The reliability of the lead and the lead-free solder joint was also evaluated. The reliability of lead-free solder joint is found to be higher than that of lead solder joint.


Sign in / Sign up

Export Citation Format

Share Document