Modeling the Economic Performance of Industrial Systems Using Mathematical Programming

2015 ◽  
Vol 809-810 ◽  
pp. 1553-1558
Author(s):  
Flavia Fechete ◽  
Anișor Nedelcu

Mathematical programming models and especially their subclass - linear programming models - plays an extremely important role, both in theory and in economic practice. Linear programming, through its results, brought a considerable contribution to improving management methods in economics and it has boosted theoretical research in modeling complex economic systems, study and interpretation of laws and economic processes. Developing and designing a model for achieving the economic performance of the industrial system allows managers making optimal decision and ensures the improvement of their activity. This paper aim is to determine an optimal manufacturing program for an industrial system, so that, by its implementation, to achieve economic performance. The manufacturing program conducted using a computer software will allow this entity to optimize their management decision process by providing information related to physical production that must be executed on each of their the products, or about the unused or overloaded capacity, in order to maximize their profits.

1985 ◽  
Vol 17 (1) ◽  
pp. 169-176 ◽  
Author(s):  
Wesley N. Musser ◽  
Vickie J. Alexander ◽  
Bernard V. Tew ◽  
Doyle A. Smittle

AbstractRotations have historically been used to alleviate pest problems in crop production. This paper considers methods of modeling rotations in linear programming models for Southeastern vegetable production. In such models, entering each possible crop rotation as a separate activity can be burdensome because of the large numbers of possible rotational alternatives. Conventional methodology for double crop rotations reduces the number of activities but must be adapted to accommodate triple crop rotational requirements in vegetable production. This paper demonstrates these methods both for a simple example and an empirical problem with numerous rotation alternatives. While the methods presented in this paper may have computational disadvantages compared to entering each rotation as a separate activity, they do have advantages in model design and data management.


Author(s):  
Minghe Sun

Mathematical programming models for discriminant and classification analysis are presented. Specifically, linear programming and mixed integer programming approaches are discussed. For each approach, two-class classification models and multi-class classification models are discussed. The emphasis is on the formulations of these mathematical programming models rather than on their performances. Two illustrative examples, one for two-class and the other for multi-class classification, are used to demonstrate the formulations of these mathematical programming models. An example is used to demonstrate the formulation after a mathematical programming model is presented.


1986 ◽  
Vol 18 (2) ◽  
pp. 155-164 ◽  
Author(s):  
Bruce A. McCarl ◽  
Jeffrey Apland

AbstractSystematic approaches to validation of linear programming models are discussed for prescriptive and predictive applications to economic problems. Specific references are made to a general linear programming formulation, however, the approaches are applicable to mathematical programming applications in general. Detailed procedures are outlined for validating various aspects of model performance given complete or partial sets of observed, real world values of variables. Alternative evaluation criteria are presented along with procedures for correcting validation problems.


2014 ◽  
Vol 19 (6) ◽  
pp. 503-514 ◽  
Author(s):  
Wei-Che Hsu ◽  
Jay M. Rosenberger ◽  
Neelesh V. Sule ◽  
Melanie L. Sattler ◽  
Victoria C. P. Chen

Sign in / Sign up

Export Citation Format

Share Document