Parametric Study on the Approach Problem of an Integral Abutment Bridge Subjected to Cyclic Loading due to Temperature Changes

2016 ◽  
Vol 846 ◽  
pp. 421-427
Author(s):  
Ahmed S. Alqarawi ◽  
Chin J. Leo ◽  
D.S. Liyanapathirana ◽  
Sanka Ekanayake

Integral Abutment Bridges are widely utilized around the world because they offer a design alternative minimizing the potential construction and maintenance difficulties associated with expansion joints in other types of bridges. However, integral bridge systems also have certain issues that result from the absence of expansion joints. This is because temperature changes induce cycles of elongations and shortenings in the bridge deck which lead to rotational movements in bridge abutments against and away from the retained soil. This phenomenon may develop long term problems in terms of settlement of the backfill at the bridge approach and escalation in the lateral earth pressure acting on the bridge abutments. This paper aims to investigate the approach settlement and lateral earth pressure development in integral bridges abutments using finite element modelling of a concrete bridge abutment and the adjoining soil using the ABAQUS software. The paper presents a parametric study of the effects imposed by abutment movements on the retained soil. This study also investigates the effectiveness of using expanded polystyrene (EPS) geofoam inclusions as a remedial measure to minimize the approach settlement and lateral stress ratcheting effects in Integral Abutment Bridges.

2014 ◽  
Vol 51 (7) ◽  
pp. 713-734 ◽  
Author(s):  
Shelley A. Huntley ◽  
Arun J. Valsangkar

Integral abutment bridges accommodate thermal superstructure movements through flexible foundations rather than expansion joints. While these structures are a common alternative to conventional design, the literature on measured field stresses in piles supporting integral abutments appears to be quite limited. Therefore, field data from strain gauges installed on the abutment foundation piles of a 76 m long; two-span integral abutment bridge are the focus of this paper. Axial load, weak- and strong-axis bending moments of the foundation piles, as well as abutment movement and backfill response, are presented and discussed. Results indicate that the abutment foundation piles are bending in double curvature about the weak axis, as a result of thermal bridge movements, and bending also about the strong axis due to tilting of the abutments. A simple subgrade modulus approach is used to show its applicability in predicting behaviour under lateral loading. In the past, much emphasis has been placed on the lateral displacements of piles and less on variations of axial load. In this paper, a new hypothesis, which offers insight into the mechanisms behind the observed thermal variations in axial load, is proposed and assessed. The data from the field monitoring are also compared with the limited data reported in the literature.


Author(s):  
Suhail Albhaisi ◽  
Hani Nassif

This paper presents a simple approach to calculate the displacements and the rotations induced by thermal loading in integral abutment bridges (IABs). The approach was derived from the results of a parametric study that investigated the effect of substructure stiffness on the performance of short- and medium-length steel IABs built on clay and sand under thermal load effects. Various parameters, such as pile size and orientation, pile material, and foundation soil stiffness, were considered in the study. Detailed three-dimensional (3-D) finite element (FE) models using the software LUSAS were developed to capture the overall behavior of IABs. The developed 3-D FE model was calibrated with field measurements obtained from a previous study. A parametric study was carried out with the calibrated models to study the effects of the above parameters on the performance of IABs under thermal loading using the AASHTO load and resistance factor design temperature ranges. The study showed that most parameters have significant effects on the displacement and rotation of the abutment and the supporting piles. Also, for relatively wide IABs, there were significant variations in the displacement and rotations in the substructure elements between interior and exterior locations. This approach, which used simple equations and charts and included parameters such as the length of the bridge, the stiffness of the foundation soil, and the pile location, provided results that were comparable with those of a detailed FE analysis.


2015 ◽  
Vol 20 (1) ◽  
pp. 04014058 ◽  
Author(s):  
Zhihui Zhu ◽  
Michael T. Davidson ◽  
Issam E. Harik ◽  
Liecheng Sun ◽  
Kevin Sandefur

2013 ◽  
Vol 50 (8) ◽  
pp. 841-857 ◽  
Author(s):  
Shelley A. Huntley ◽  
Arun J. Valsangkar

Integral abutment bridges have become a successful alternative to the traditional design procedure of using expansion joints to balance the thermal movements of bridge structures. However, there are many design and detailing variations, and uncertainties exist about the soil–structure interaction of the integral abutments. Therefore, field data from pressure cells installed behind the abutments of a 76 m long, two-span, pile-supported integral abutment bridge are the focus of this paper. The data on external displacements of the abutments are also reported. The applicability of using common theoretical passive earth pressure coefficients is assessed and it appears that the traditional methods of Coulomb and Rankine are not the best approach for predicting the earth pressure envelope. Additionally, over the monitoring period of three years, it was found that a definite conclusion regarding the ratcheting of lateral earth pressure could not be established for this bridge site. Finally, comparisons to earth pressures measured at other field studies indicate variability in the earth pressure distribution, magnitude, and behaviour over time, as these are dependent on several factors distinctive to each bridge site.


2008 ◽  
Vol 13 (5) ◽  
pp. 511-526 ◽  
Author(s):  
Jimin Huang ◽  
Carol K. Shield ◽  
Catherine E. W. French

Sign in / Sign up

Export Citation Format

Share Document