bridge site
Recently Published Documents


TOTAL DOCUMENTS

129
(FIVE YEARS 29)

H-INDEX

12
(FIVE YEARS 2)

2021 ◽  
Vol 11 (20) ◽  
pp. 9645
Author(s):  
Jun Wang ◽  
Jiawu Li ◽  
Feng Wang ◽  
Guang Hong ◽  
Song Xing

Currently, research on wind fields of U-shaped valleys is rarely reported, and anemometers or wind observation towers are usually used for field measurement, but the measured position is limited and the cost is high. In order to study the wind characteristics in a mountainous U-shaped valley, a long-range, all-weather, high-precision Wind3D 6000 lidar was placed at a bridge site located in a U-shaped valley. Then, according to the data effective ratio and wind speed, nearly 6 months of original data ranging from 0 m to 810 m were analyzed statistically. It was found that the spatio-temporal distribution of wind speed and direction is obviously not uniform, and the wind parameters are correlated among different virtual wind towers (VWTs). By classification, the effective data of midspan position is taken as the research object, and the wind speed profile is divided into three categories. Type-1 shows disorderly characteristics; Type-2 shows a linear relationship; and Type-3 shows a nonlinear relationship. The wind direction is consistent with the main wind direction at the bridge site and the average wind direction of different VWTs has a high consistency. The concept of wind-direction deflection rate is put forward to describe the variation of wind direction with height. These measured wind parameters could be used as a reference for bridge wind-resistant design.


2021 ◽  
Vol 21 (5) ◽  
pp. 1072
Author(s):  
Mokhammad Fajar Pradipta ◽  
Harno Dwi Pranowo ◽  
Viny Alfiyah ◽  
Aulia Sukma Hutama

Potential energy curves (PECs) and energy profiles of atomic O attack on coronene as a model for graphene/graphitic surface and interstellar reaction surface have been computed at the unrestricted B3LYP/cc-pVDZ level of theory to elaborate on atomic O attack mechanism and chemisorption on coronene. The PECs were generated by scanning the O atom distance to the closest carbon atom on "top" and "bridge" positions in the coronene, while fully relaxed geometries in the triplet state were investigated to gain the energy profile. We found that the most favorable geometry as the final product was the chemically bound O on the "bridge" site in the singlet state with an interaction energy of –29.2 kcal/mol. We recommended a plausible mechanism of atomic O attack and chemisorption reaction on coronene or generally graphitic surface starting from the non-interacting O atom and coronene systems into the chemically bound O atom on coronene.


2021 ◽  
Vol 2 (1) ◽  
Author(s):  
Longfei Xing ◽  
Mingjin Zhang ◽  
Yongle Li ◽  
Zhijie Zhang ◽  
Dianguo Yin

AbstractTo have a comprehensive understanding of the complex wind environment at a bridge site in the mountainous area, a numerical simulation study of the wind environment under the mean and the fluctuating wind flow conditions was carried out and the results were compared. First, according to the weighted amplitude wave superposition (WAWS) method, the fluctuating wind speed time history was compiled by UDF. And the wind speed time history was added to the inlet boundary of a numerical empty wind tunnel to verify the feasibility of the simulation method of the fluctuating wind. Then, with a bridge in the mountainous area in Yunnan as the engineering background, a numerical simulation study of the wind environment of the bridge site area under the mean wind flow and the fluctuating wind flow was carried out by using FLUENT. The study indicates that Large Eddy Simulation (LES) method more accurate than Reynold average method with a sufficient number of grids and a short enough time step. The average wind characteristics of the bridge site under the mean wind and the fluctuating wind are not much different. The fluctuating wind characteristics at the bridge site are mainly affected by the terrain and the pulsating component of the wind flow. There are different terrain pulsation effects at the bridge site under different incoming flow directions.


2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Jing Cao ◽  
Bingjie Mai ◽  
Hua Chen ◽  
Yuhu Li ◽  
Juanli Wang

AbstractEarthen cultural ruins and their subsurface environments act as carriers or support for aboveground cultural heritage artefacts, and groundwater has been identified as the most important factor accelerating the destruction of ruins. In this paper, a wooden structure on the site of the Xianyang Shahe ancient bridge is taken as the research object. Through geotechnical surveys and site sample analyses, the relationship between the environment and cause of damage at the site is explored. Fluctuations in groundwater level are found to affect the movement of water and salt, thereby accelerating deterioration and allowing microbes and other soil inhabitants and plants to erode the ruins. Furthermore, strong correlations are revealed between the stratigraphy of the area and both ruin status and sample analysis results. Geotechnical investigation data are used to predict the effects of various damaging factors on long-term preservation and the underlying mechanisms and to propose feasible, long-term countermeasures for preservation studies.


2021 ◽  
Vol 9 ◽  
Author(s):  
Xiaojing Li ◽  
Yu Ma ◽  
Wenzhong Zhou ◽  
Zhao Liu

FeCrAl alloys are promising accident-tolerant fuel (ATF) cladding materials for applications in light water reactors (LWRs). Despite the excellent mechanical and antioxidation properties, this series of iron-based alloys has poor hydrogen embrittlement (HE) resistance due to the strong hydrogen uptaking ability. The hydrogen embrittlement effect can cause the degradation and premature failure of the material, and this effect can be enhanced by the high-temperature/high-pressure/high-irradiation environment in reactors. So, the potential danger should be taken seriously. In this paper, we have studied the hydrogen atom and molecule adsorptions on both Fe (100) and FeCrAl (100) surfaces to discover how the hydrogen atom and molecule (H/H2) interact with the Fe and FeCrAl (100) surface in the first place. The results show that there are strong element effects on the FeCrAl surface. The Al atom itself has no interaction with hydrogen. When the Al atom is beside the Fe atom, this Fe atom has a slightly lower interaction with hydrogen. However, the Al atom beside the Cr atom will enhance the hydrogen interaction with this Cr atom. On the other hand, when the Cr atom is beside the Fe atom, these two atoms (Fe–Cr bridge site) can reduce the interactions with H. In addition, when two Cr and two Fe atoms together make a four-fold site (FF site), the two Cr atoms can increase the interaction of the two Fe atoms with H. The element effects discovered can be a good guide for making hydrogen prevention coatings.


Author(s):  
Hemant K Upadhyay ◽  
Rahul Kumar Raj

A Bridge is a structure that spans horizontally the road, body of water or a valley. Bridge Construction may vary depending on the intended functioning of the bridge and nature of the that geographical region. Keeping in view the bridge site and various constraints, type of bridge and method of construction are to be selected carefully for successful completion of bridge construction. However, It has been realized that critical barriers in bridge construction need to be identified and evaluated. The intended purpose of the presented research work is to check the critical barriers in bridge construction. Six critical barriers in bridge construction have been shortlisted by carrying out extensive review of literature and categorized in to three categories: 'Climate factors', 'Engineering factors', 'Public problem factors' using experts’ inputs. Fuzzy Analytical Hierarchy Process (F-AHP) method is chosen to rank of critical barriers in bridge construction. All pair wise comparison matrices are fabricated on the basis of a survey with inputs from thirty civil engineers. The outcomes may be instrumental for the planning creators for designing influential strategies to deal with critical barriers in bridge construction.


2021 ◽  
Vol 2021 ◽  
pp. 1-7
Author(s):  
Sun Yan

The adsorptions of CO on Ni(110) surface at different coverages have been investigated by first-principle calculations. The results show that CO will be bonded at short bridge site preferentially. And CO preferentially absorbs upright at short bridge sites and top sites at 1/6 monolayer coverage. With increasing coverage to 0.5 ML, the enhanced steric repulsion leads to the slope of CO. For 1/6 and 1/2 monolayer coverage, CO is mainly bonded at short bridge site and atop site simultaneously at a certain ratio. When CO coverage is 1 monolayer, CO absorbs at short bridge site and forms p2mg configuration. As the coverage of CO is increased to finally form the p2mg structure, there is a continuous frequency shift up to the value 1962.27 cm-1. The vibration frequencies we calculated are consistent with relative experimental results. DOS of CO molecules and Ni atoms are discussed too.


2021 ◽  
Author(s):  
Jie Dai ◽  
Yinlong Zhu ◽  
Yu Chen ◽  
Xue Wen ◽  
Mingce Long ◽  
...  

Abstract Improving the catalytic efficiency of platinum (Pt) for hydrogen evolution reaction (HER) is crucial for water splitting technologies, and hydrogen spillover has emerged as a new frontier in designing the binary-component Pt/support HER electrocatalysts. However, such binary catalysts always suffer from long reaction pathway, undesirable interfacial barrier, and complicated synthesis processes. Here we report a single-phase complex oxide La2Sr2PtO7+δ as a high-performance HER electrocatalysts in acidic media via a unique atomic-scale hydrogen spillover effect between multifunctional catalytic sites. With insights from theoretical calculations, a possible synergistic mechanism involving the hydrogen spillover channel from OLa site→La-Pt bridge site→Pt site is proposed; namely, the OLa site enriches proton, the La-Pt bridge site with thermo-neutral H* adsorption facilitates the hydrogen spillover and H2 generation, and Pt site favors the final H2 desorption. Benefiting from such unusual phenomenon, the resulting La2Sr2PtO7+δ exhibits an exceptional HER electrode activity with low overpotential of 13 mV at 10 mA cm− 2 and small Tafel slope of 22 mV dec− 1, and significantly enhanced intrinsic activity and durability than commercial Pt black catalyst.


2021 ◽  
Vol 22 (3) ◽  
pp. 1373
Author(s):  
Ryo Kishida ◽  
Shosuke Ito ◽  
Manickam Sugumaran ◽  
Ryan Lacdao Arevalo ◽  
Hiroshi Nakanishi ◽  
...  

Two types of melanin pigments, brown to black eumelanin and yellow to reddish brown pheomelanin, are biosynthesized through a branched reaction, which is associated with the key intermediate dopaquinone (DQ). In the presence of l-cysteine, DQ immediately binds to the –SH group, resulting in the formation of cysteinyldopa necessary for the pheomelanin production. l-Cysteine prefers to bond with aromatic carbons adjacent to the carbonyl groups, namely C5 and C2. Surprisingly, this Michael addition takes place at 1,6-position of the C5 (and to some extent at C2) rather than usually expected 1,4-position. Such an anomaly on the reactivity necessitates an atomic-scale understanding of the binding mechanism. Using density functional theory-based calculations, we investigated the binding of l-cysteine thiolate (Cys–S−) to DQ. Interestingly, the C2–S bonded intermediate was less energetically stable than the C6–S bonded case. Furthermore, the most preferred Cys–S−-attacked intermediate is at the carbon-carbon bridge between the two carbonyls (C3–C4 bridge site) but not on the C5 site. This structure allows the Cys–S− to migrate onto the adjacent C5 or C2 with small activation energies. Further simulation demonstrated a possible conversion pathway of the C5–S (and C2–S) intermediate into 5-S-cysteinyldopa (and 2-S-cysteinyldopa), which is the experimentally identified major (and minor) product. Based on the results, we propose that the binding of Cys–S− to DQ proceeds via the following path: (i) coordination of Cys–S− to C3–C4 bridge, (ii) migration of Cys–S− to C5 (C2), (iii) proton rearrangement from cysteinyl –NH3+ to O4 (O3), and (iv) proton rearrangement from C5 (C2) to O3 (O4).


Sign in / Sign up

Export Citation Format

Share Document