double curvature
Recently Published Documents


TOTAL DOCUMENTS

258
(FIVE YEARS 82)

H-INDEX

18
(FIVE YEARS 4)

2022 ◽  
pp. 107754632110567
Author(s):  
Hasan Seilsepour ◽  
Mohamadreza Zarastvand ◽  
Roohollah Talebitooti

A viscoelastic model is proposed in this approach to determine the sound transmission loss coefficient of a sandwich shell system with double curvature. The structure is composed of a double-walled composite shell subjected to a viscoelastic core. Investigating the efficient impresses of rotary inertia and shear deformation, vibration equations of both outer and inner shells are extracted within the framework of shear deformation shallow shell theory. Besides, the Zener mathematical model is used for viscoelastic material, which is based on a spring connected in series with a parallel mixture of spring and dashpot. This model presents the dynamic response in the whole frequency domain at which shear modulus and bulk complex modulus are frequency dependent. Since the performed studies on the sound transmission loss of this kind of structures are insignificant, the outcomes of plate models with a viscoelastic core are used to provide a reliable sound transmission loss comparison. The results show that the applied strategy can improve the acoustic characteristics of the system at high frequencies compared to that of a single-layer one with the same mass. This issue is more highlighted while the thickness of the viscoelastic layer enhances, which confirms the positive performance of the viscoelastic materials in this range of frequency, particularly in the resonant frequency. In addition to the curvature effect on acoustic features, the vibration response of the system is configured based on various frequencies and materials.


2021 ◽  
Author(s):  
Caiyuan Lin ◽  
Guan-Nan Chu ◽  
Lei Sun

Abstract Tube hydro-forging (THFG) combining with the pre-bending is an advanced method to manufacture the complex cross-sectional tubular component with curved axis. However, the effect of pre-bending on the subsequent THFG, especially on the critical internal pressure required to inhibit wrinkling, has not been clarified yet. Therefore, this paper makes a detailed study on it. At first, based on the energy method, the change rule between the critical internal pressure and the hoop strain was established when pre-bending was considered. Subsequently, the mechanics condition difference between single and double curvature differential segment during THFG was analyzed. Via the plastic theory, the distribution of hoop strain could be obtained. Mainly due to the uneven distribution of thickness and cold work-hardening caused by pre-bending, the maximum hoop strain at the outer straight-wall was greater than that at the inner straight-wall during THFG. Substituting the maximum hoop strain at the outer/inner straight-wall into the change rule, then their mathematical model of the critical internal pressure to restrain the wrinkling could be solved respectively. Finally, the critical internal pressure considering pre-bending was determined by that of outer straight-wall, and its value was always greater than the critical internal pressure without considering pre-bending under the same punch stroke. With the increase of bending radius, the critical internal pressure difference between considering and not considering pre-bending also increases. When the bending radius was 250 mm, the critical internal pressure difference was 33%, while it increased to 74% as the bending radius reduced to 100 mm, all of which were verified by experiment. The effect of friction coefficient on the critical internal pressure was also studied. In conclusion, this work provided a new and more accurate prediction model of critical internal pressure to guide practical production for when existing the pre-bending.


2021 ◽  
pp. 275-285
Author(s):  
E. Özdemir ◽  
L. Kiesewetter ◽  
K. Antorveza ◽  
T. Cheng ◽  
S. Leder ◽  
...  

AbstractDouble curvature enables elegant and material-efficient shell structures, but their construction typically relies on heavy machining, manual labor, and the additional use of material wasted as one-off formwork. Using a material’s intrinsic properties for self-shaping is an energy and resource-efficient solution to this problem. This research presents a fabrication approach for self-shaping double-curved shell structures combining the hygroscopic shape-changing and scalability of wood actuators with the tunability of 3D-printed metamaterial patterning. Using hybrid robotic fabrication, components are additively manufactured flat and self-shape to a pre-programmed configuration through drying. A computational design workflow including a lattice and shell-based finite element model was developed for the design of the metamaterial pattern, actuator layout, and shape prediction. The workflow was tested through physical prototypes at centimeter and meter scales. The results show an architectural scale proof of concept for self-shaping double-curved shell structures as a resource-efficient physical form generation method.


Author(s):  
Wenbin Xie ◽  
Magdi MOHAREB

The present study documents some inconsistencies observed when applying the lateral torsional buckling provisions of the Canadian standards of steel structures to characterize the elastic critical moments for monosymmetric beams subjected to linear moment gradients. An overview of the underlying theoretical background is presented and the reasons behind the discrepancies observed between standard-recommended solutions on one hand, and theoretical/finite element solutions on the other hand are discussed. An improved solution is then developed by generating a parametric study based on finite element analyses and developing regression equations to estimate the critical moments for monosymmetric beams under linear moments inducing double curvature. The expressions are cast in a dimensionless form as a function of four parameters. The potential use of the proposed solution is subsequently illustrated through a design example.


2021 ◽  
Vol 263 (4) ◽  
pp. 2336-2347
Author(s):  
Federico Di Marco

NVH engineers are faced with the challenge of designing trim parts for vehicle interior and exterior, like inner dash insulators, carpets, underbody shields or engine encapsulations, which can be made with very different Bills of Materials (BOMs) including among others foams, felts or heavier layers. The measurables commonly used to rank various solutions are Transmission Loss (TL) and absorption. Depending on the numerical analysis method, different approaches may be considered for the evaluation of the TL of an automotive component. In particular, in Statistical Energy Analysis (SEA), automotive components are modeled as an assembly of panels having a simple shape, e.g. flat panels and/or panels with single or double curvature. Furthermore, in SEA the trim is normally modeled by means of the Transfer Matrix Method (TMM), which is essentially a 2-dimensional methodology. This paper intends to analyze in some depth the level of approximation that these practices bring with themselves, specifically in relation to the modelling of an automotive floor. More in detail, the aim of the paper is first to investigate what impact has the presence of the tunnel on the TL of a vehicle floor in bare and trimmed conditions and then to evaluate if the presence of the tunnel can be better modeled by using a semi-cylinder or three flat plates welded together in a trapezoidal shape, both shapes considered as a reasonable simplification of the actual geometry of a typical tunnel. The analysis is carried out at simulation level using FE. To investigate both air bone noise and structure borne noise transmission, two types of excitations are used: a diffuse acoustic pressure field applied to the entire floor surface and an imposed displacement applied to the edge of the floor surface. Furthermore, 3 different kind of trims are taken into consideration in order to analyze if and how the tunnel modeling strategy may influence the evaluation of the trim effectiveness.


Sign in / Sign up

Export Citation Format

Share Document