Analysis of the Bearing and Deformation Characteristics for Large Diameter Pile

2014 ◽  
Vol 1021 ◽  
pp. 79-82
Author(s):  
Dong Xiao Zhang

Base on the static load test curves of large diameter pile, the process of pile top and bottom settlement have been studied, together with deep analysis of bearing and deformation characteristics. The study shows that side friction play before end resistance, steep fall of curves caused by sediment compaction is a sign of pile side friction to the limit; pile material occurs elastic deformation in the process of loading.

2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
Zhijun Zhou ◽  
Yaqin Dong ◽  
Peijun Jiang ◽  
Dandan Han ◽  
Tong Liu

In this paper, a static load test and a multiparameter statistical analysis method are used to study the value of pile side friction in different soil layers in a loess region. Currently, static load testing is the most commonly used method to determine the bearing capacity of pile foundation. During the test, a vertical load is applied at the top of the pile, the data under each load level are recorded, and a Q-S curve is drawn to obtain the ultimate bearing capacity of a single pile. Reinforcement stress gauges are installed at different sections of the pile body, and then the axial force and the pile side friction of each section are calculated. Few studies have investigated the calculation of pile side friction in different soil layers using the multiparameter statistical analysis method. Obtaining accurate results using this method will provide an important supplement to the calculation of pile side friction and will also be conducive to the development of theoretical calculation of pile side friction. Therefore, taking Wuding Expressway project in loess region as an example, the lateral friction resistance of six test piles is studied through static load testing and multiparameter statistical analysis. The multiparameter statistical analysis method is compared with the static load test results, and the error is controlled within 20%. The results show that the calculation results of multiparameter statistical analysis essentially fulfill engineering requirements.


2013 ◽  
Vol 838-841 ◽  
pp. 854-857
Author(s):  
Rui Chao Cheng ◽  
Xin Yu

The bearing capacity characteristics and side friction characters of post-grouting pile were studied in the static load test which included two piles with post-grouting or not. When the pile head settlements were same, the loads applied on the pile top were used to analyze the bearing properties of post-grouting pile. We got the ultimate side friction of post-grouting pile after fitting test curves of relations between friction resistance and displacement. The tests indicate that both the bearing capacity characteristics and side friction of post-grouting pile are increased in various degrees.


2001 ◽  
pp. 95-103
Author(s):  
Hisashi MURAISHI ◽  
Tomoyasu SUGIYAMA ◽  
Masahiko SAMIZO ◽  
Kazuyuki ANDO

2012 ◽  
Vol 256-259 ◽  
pp. 410-415 ◽  
Author(s):  
Kai Cheng Huo ◽  
Xu Qin ◽  
Huan Huan Yue

Combined with the uplift static load test of large-diameter steel pipe pile in Xiangshan Port bridge of Ningbo, make analysis of Q-s curve and s-lgt curve, axial force distribution curve and unit shaft resistance, revealing the uplift characteristic of the steel pipe pile. The analyses show that the uplift steel pipe pile is pure friction pile, the uplift load is decreased downward through the axial force of pile body, the shaft resistance gradually plays from top to bottom and play completely in the upper soil. Moreover, it has used hyperbolic model to fit the measured Q-s curve by Matlab software, and the fitting precision is high. Then make the hyperbolic model non-dimensional, and attempt to predict ultimate bearing capacity using the maximum curvature point of the non-dimensional hyperbolic model, to get some mechanical characteristic.


2013 ◽  
Vol 671-674 ◽  
pp. 186-189
Author(s):  
Werasak Raongjant ◽  
Meng Jing

Field test data from three instrumented large diameter bored piles in Pattaya city of Thailand were analyzed to study the behavior of load transfer mechanism from the pile to soil. The pile load test data were obtained from conventional static load test. These bored piles used for conventional static load test have the same diameter of 0.80 m and different length in the range of 25 m to 32 m. Results from back-analysis found that the skin friction resistance, β, has the value between 0.20 and 0.64 and the bearing capacity at end of piles, Nq, which is in the range of 10 to150, is much lower than the theoretical values proposed by other researchers before.


2014 ◽  
Vol 580-583 ◽  
pp. 572-578
Author(s):  
Jia Xing Chen ◽  
Tong He Zhou ◽  
Yuan Cheng Guo

The Static load test of the post-grouting filling pile in Zhengzhou city’s third ring road rapidness project, uses strain gauge and distributed optical fiber to track and monitor the evolution rule of load-settlement, pile body stress, pile side resistance, etc., interprets bearing properties of large diameter post-grouting filling pile, contrasts and analyzes the monitoring data obtained by optical fiber and strain gauge at the same time. The result shows that, the monitoring effect of the pile body stress obtained by distributed optical fiber technology is superior to the strain gauge, but the data of them still needs to verify each other.


Author(s):  
Md. Nafiul Haque ◽  
Murad Y. Abu-Farsakh ◽  
Chris Nickel ◽  
Ching Tsai ◽  
Jesse Rauser ◽  
...  

This paper presents the results from a pile load testing program for a bridge construction project at Chalmette, Louisiana. The load testing includes three 66-in. spun-cast post-tensioned open-ended cylinder piles and one 30-in. square prestressed concrete (PSC) pile driven at four different locations along the bridge site in clayey-dominant soil. Both cone penetration tests and soil borings/laboratory testing were used to characterize the subsurface soil conditions. All test piles (TP) were instrumented with strain gauges to measure the load distribution along the length of the TPs and to measure the side and tip resistances, separately. Dynamic load tests (DLT) were performed on all TPs at different waiting periods after pile installations to quantify the amount of setup (i.e., increase in pile resistance with time). Case Pile Wave Analysis Program (CAPWAP®) analyses were performed on the DLT data to calculate the resistance distributions along the TPs. A static load test was performed only on the PSC pile and statnamic load tests (SNLT) were conducted on both pile types. Design parameters such as the total stress adhesion factor, α, and the effective stress coefficient, β, were back-calculated. The α values ranged from 0.41 to 0.86, and the β values ranged from 0.13 to 0.29. The load test results showed that SNLT overestimated the tip resistance as compared with dynamic and static load tests. Moreover, the pile tip resistance was almost constant during the testing period, and setup was mainly attributed to increase in pile side resistance with time.


2000 ◽  
Vol 37 (6) ◽  
pp. 1283-1294 ◽  
Author(s):  
Caizhao Zhan ◽  
Jian-Hua Yin

The Mass Transit Railway Corporation proposes to construct the Tseung Kwan O Depot (TKD) within Area 86 reclamation at Tseung Kwan O as part of the Tseung Kwan O Extension. The proposed foundation for the TKD comprises about 1000 large-diameter, bored, cast in situ, drilled shafts founded on or socketed into rock. To confirm the design allowable end bearing capacity and rock socket side resistance for the drilled shaft foundations, two test piles were constructed and tested. Both test piles were instrumented with strain gauges and rod extensometers. This paper presents the static compressive load test results on both test piles. The test results indicate that an end bearing capacity of 20.8 MPa (design allowable 7.5 MPa) and rock socket side resistance 2.63 MPa (design allowable 0.75 MPa) are achieved during the pile load tests with no sign of failure.Key words: drilled shaft, static load test, end bearing capacity, rock socket, rock socket side resistance, load transfer.


Sign in / Sign up

Export Citation Format

Share Document