Hyper-Parameters Selection of LS-SVM Based on PSO Algorithm with Multi-Particles Sharing Strategy

2014 ◽  
Vol 1049-1050 ◽  
pp. 1654-1657
Author(s):  
Jie Liu ◽  
Xu Sheng Gan ◽  
Wen Ming Gao

To optimize the parameters of LS-SVM effectively, an improved Particle Swarm Optimization (PSO) algorithm is proposed to select the optimal parameters combination. For the improvement of the precocity in PSO algorithm, an multi-particles sharing strategy is introduced in simple PSO algorithm to enhance the convergence. The simulation indicates that the proposed PSO algorithm has a better selection on LS-SVM parameters.

2014 ◽  
Vol 2014 ◽  
pp. 1-10
Author(s):  
Lizhi Cui ◽  
Zhihao Ling ◽  
Josiah Poon ◽  
Simon K. Poon ◽  
Junbin Gao ◽  
...  

This paper proposes a separation method, based on the model of Generalized Reference Curve Measurement and the algorithm of Particle Swarm Optimization (GRCM-PSO), for the High Performance Liquid Chromatography with Diode Array Detection (HPLC-DAD) data set. Firstly, initial parameters are generated to construct reference curves for the chromatogram peaks of the compounds based on its physical principle. Then, a General Reference Curve Measurement (GRCM) model is designed to transform these parameters to scalar values, which indicate the fitness for all parameters. Thirdly, rough solutions are found by searching individual target for every parameter, and reinitialization only around these rough solutions is executed. Then, the Particle Swarm Optimization (PSO) algorithm is adopted to obtain the optimal parameters by minimizing the fitness of these new parameters given by the GRCM model. Finally, spectra for the compounds are estimated based on the optimal parameters and the HPLC-DAD data set. Through simulations and experiments, following conclusions are drawn: (1) the GRCM-PSO method can separate the chromatogram peaks and spectra from the HPLC-DAD data set without knowing the number of the compounds in advance even when severe overlap and white noise exist; (2) the GRCM-PSO method is able to handle the real HPLC-DAD data set.


2013 ◽  
Vol 394 ◽  
pp. 505-508 ◽  
Author(s):  
Guan Yu Zhang ◽  
Xiao Ming Wang ◽  
Rui Guo ◽  
Guo Qiang Wang

This paper presents an improved particle swarm optimization (PSO) algorithm based on genetic algorithm (GA) and Tabu algorithm. The improved PSO algorithm adds the characteristics of genetic, mutation, and tabu search into the standard PSO to help it overcome the weaknesses of falling into the local optimum and avoids the repeat of the optimum path. By contrasting the improved and standard PSO algorithms through testing classic functions, the improved PSO is found to have better global search characteristics.


2018 ◽  
Author(s):  
Boris Almonacid

The optimal selection of a natural reserve (OSRN) is an optimisation problem with a binary domain. To solve this problem the metaheuristic algorithm Particle Swarm Optimization (PSO) has been chosen. The PSO algorithm has been designed to solve problems in real domains. Therefore, a transfer method has been applied that converts the equations with real domains of the PSO algorithm into binary results that are compatible with the OSRN problem. Four transfer functions have been tested in four case studies to solve the OSRN problem. According to the tests carried out, it is concluded that two of the four transfer functions are apt to solve the problem of optimal selection of a natural reserve.


2018 ◽  
Author(s):  
Boris L Almonacid

The optimal selection of a natural reserve (OSRN) is an optimisation problem with a binary domain. To solve this problem the metaheuristic algorithm Particle Swarm Optimization (PSO) has been chosen. The PSO algorithm has been designed to solve problems in real domains. Therefore, a transfer method has been applied that converts the equations with real domains of the PSO algorithm into binary results that are compatible with the OSRN problem. Four transfer functions have been tested in four case studies to solve the OSRN problem. According to the tests carried out, it is concluded that two of the four transfer functions are apt to solve the problem of optimal selection of a natural reserve.


2015 ◽  
Vol 15 (3) ◽  
pp. 140-149 ◽  
Author(s):  
Huang Dong ◽  
Gao Jian

Abstract This paper proposes a SVM (Support Vector Machine) parameter selection based on CPSO (Chaotic Particle Swarm Optimization), in order to determine the optimal parameters of the support vector machine quickly and efficiently. SVMs are new methods being developed, based on statistical learning theory. Training a SVM can be formulated as a quadratic programming problem. The parameter selection of SVMs must be done before solving the QP (Quadratic Programming) problem. The PSO (Particle Swarm Optimization) algorithm is applied in the course of SVM parameter selection. Due to the sensitivity and frequency of the initial value of the chaotic motion, the PSO algorithm is also applied to improve the particle swarm optimization, so as to improve the global search ability of the particles. The simulation results show that the improved CPSO can find more easily the global optimum and reduce the number of iterations, which also makes the search for a group of optimal parameters of SVM quicker and more efficient.


2011 ◽  
Vol 50-51 ◽  
pp. 3-7 ◽  
Author(s):  
Nan Ping Liu ◽  
Fei Zheng ◽  
Ke Wen Xia

CDMA multiuser detection (MUD) is a crucial technique to mobile communication. We adopt improved particle swarm optimization (PSO) algorithm in MUD which incorporates factor and utilizes function to discrete PSO. Comparison of BER and near-far effect has verified its effectiveness on multi-access interference (MAI). The algorithm accelerates the convergent speed meanwhile it also displays feasibility and superiority in case simulation.


Sign in / Sign up

Export Citation Format

Share Document