Integration of 3D-Routing for the Design of Molded Interconnect Devices

2010 ◽  
Vol 139-141 ◽  
pp. 1109-1112
Author(s):  
Yong Zhuo

One of the fundamental innovations in the field of mechatronics is the direct material integration of mechanical and electronic functions using Molded Interconnect Devices (MID technology). Unlike conventional circuit boards, they are not limited to two dimensions but offer the possibility to arbitrarily lay printed circuit traces on the surfaces of the 3D carrier, traditional 2D routing function in EDA cannot be directly applied in MID design. In this paper, two new 3D automatic routing methods are introduced. One method is based on a grid graph and extends Hadlock’s minimum detour algorithm; the other is gridless and combines the A*-algorithm and an extension of Hightower’s algorithm. The related 3D routing functions, which are not supported by conventional MCAD und ECAD systems, are integrated in the design system MIDCAD. With these 3D routing functions, MIDCAD enables a more effective product design based on the MID technology.

2019 ◽  
pp. 130-133
Author(s):  
A. Yu. Gladkevich

Describes the process of improving and developing tools in computer‑aided design system Delta Design. Currently, the modern  process of PCB development is quite complex and time‑consuming process. Existing CAD systems make it easier to design a  printed circuit Board model by providing powerful development tools. Along with the increasing complexity of modern printed  circuit boards, the requirements for development tools are also growing, making them constantly improve. Using the example  of  the  Delta  Design  system,  the  process  of  improving  the  tool  for  moving  track  segments  is  described.  The  analysis  of  the  advantages and disadvantages of the existing tool is made, and the decision on the need to develop a new algorithm is justified.  Of the two proposed variants of such an algorithm, the optimal one was chosen in terms of the quality of the result obtained and  the convenience of operation.


Author(s):  
Wataru Nakayama ◽  
Tatsuya Nakajima ◽  
Hiroko Koike ◽  
Ryuichi Matsuki

Addressed in the present study is the required accuracy in assuming equivalent thermal conductivities of printed circuit boards (PCBs) in the thermal analysis of electronic equipment. The required accuracy depends on the morphology of PCB and the thermal boundary condition. Out of various PCB morphologies two are considered as representatives in the extreme ends of PCB size and thermal conditions; one is a JEDEC test board having a large convection-cooled area, and the other is a small board in contact with a large solid thermal mass. The major focus of the present paper is on the case of a JEDEC test board measuring 11 cm × 11 cm and carrying a ball grid array package (4 cm square). Geometric complexity in the through-via zone under the package needs to be reduced by suitable modeling in order to simplify the analysis. In exploring modeling strategies the analyses were performed on three models. Level-one model includes the details of through-vias, and the computation is resource intensive. Level-two model is composed of two orthotropic media having pairs of different equivalent thermal conductivities, one corresponding to the via zone and the other to the rest. Level-three model is a thermal resistance network model derived from numerical/analytical composite analysis. Comparison of the results on the three models proves that the accuracy of temperature prediction is in general insensitive to the equivalent thermal conductivity values due to the dominant role of surface heat transfer on the temperature level of PCB.


Author(s):  
Yuta Nakano ◽  
Tomoyuki Hatakeyama ◽  
Masaru Ishizuka ◽  
Shinji Nakagawa ◽  
Masataka Hirokawa ◽  
...  

This paper describes a measurement method for the in-plane thermal conductivity of Printed Circuit Boards (PCBs). We designed two types of PCBs with several wiring patterns on their surfaces. This means copper amount on the PCBs is different. We measured their effective thermal conductivity in thickness direction to investigate the effects of the wiring patterns on the in-plane thermal conductivity of the PCBs. One is normal PCBs and the other is about 18 times larger PCBs than the normal PCBs. The experimental results showed that the thermal conductivity of normal PCBs was not dependent on the wiring patterns. On the other hand, the thermal conductivity of larger PCBs increased with increasing amount of copper wire due to the heat diffusion in in-plane direction by copper wires. We concluded that the effect of the wiring patterns on the in-plane thermal conductivity can be observed with our measurement method. We also performed Computational Fluid Dynamics (CFD) analyses and clarified the correlation between amount of copper wire and in-plane thermal conductivity of the PCBs.


Sign in / Sign up

Export Citation Format

Share Document