ASME 2011 Pacific Rim Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Systems, MEMS and NEMS: Volume 2
Latest Publications


TOTAL DOCUMENTS

91
(FIVE YEARS 0)

H-INDEX

7
(FIVE YEARS 0)

Published By ASMEDC

9780791844625

Author(s):  
Horacio Nochetto ◽  
Peng Wang ◽  
Avram Bar-Cohen

Driven by shrinking feature sizes, microprocessor hot spots have emerged as the primary driver for on-chip cooling of today’s IC technologies. Current thermal management technologies offer few choices for such on-chip hot spot remediation. A solid state germanium self-cooling layer, fabricated on top of the silicon chip, is proposed and demonstrated to have great promise for reducing the severity of on-chip hot spots. 3D thermo-electrical coupled simulations are used to investigate the effectiveness of a bi-layer device containing a germanium self-cooling layer above an electrically insulated silicon layer. The parametric variables of applied current, cooler size, silicon percentage, and total die thickness are sequentially optimized for the lowest hot spot temperature compared to a non-self-cooled silicon chip. Results suggest that the localized self-cooling of the germanium layer coupled with the higher thermal conductivity of the silicon chip can significantly reduce the temperature rise resulting from a micro-scaled hot spot.


Author(s):  
Naokazu Murata ◽  
Naoki Saito ◽  
Kinji Tamakawa ◽  
Ken Suzuki ◽  
Hideo Miura

Both mechanical and electronic properties of electroplated copper films used for interconnections were investigated experimentally considering the change of their micro texture caused by heat treatment. The fracture strain of the film annealed at 400°C increased from about 3% to 15% and their yield stress decreased from about 270 MPa to 90 MPa. In addition, it was found that two different fatigue fracture modes appeared in the film. One was a typical ductile fracture mode and the other was brittle one. When the brittle fracture occurred, a crack propagated along weak or porous grain boundaries which were formed during electroplating. The brittle fracture mode disappeared after the annealing at 300°C. These results clearly indicated that the mechanical properties of electroplated copper thin films vary drastically depending on their micro texture. The electrical reliability of the electroplated copper yjin film interconnections was also investigated. The interconnections used for electromigration tests were made using by a damascene process. An abrupt fracture mode due to local fusion appeared in the as-electroplated interconnections. Since the fracture rate increased almost linearly with the square of the applied current density, this fracture mode was dominated by local Joule heating. It seemed that the local current concentration occurred around the porous grain boundaries. The life of the interconnections was improved drastically after the annealing at 400°C. This was because of the increase of the average grain size and the improvement of the quality of grain boundaries in the annealed interconnections. However, the stress-induced migration occurred in the interconnections annealed at 400°C. This was because of the high tensile residual stress caused by the constraint of the densification of the films during annealing by the surrounding oxide film. Therefore, it is very important to control the crystallographic quality of electroplated copper films for improving the reliability of thin film interconnections. The quality of the grain boundaries can be evaluated by applying an EBSD (Electron Back Scatter Diffraction) analysis. New two experimentally determined parameters are proposed for evaluating the quality of grain boundaries quantitatively. It was confirmed that the crystallographic quality of grain boundaries can be evaluated quantitatively by using the two parameters, and it is possible to estimate both the strength and reliability of the interconnections.


Author(s):  
Takahiro Kano ◽  
Ikuo Shohji ◽  
Tetsuyuki Tsuchida ◽  
Toshikazu Ookubo

An electroless Ni/Pd/Au plated electrode is expected to be used as an electrode material for lead-free solder to improve joint reliability. The aim of this study is to investigate the effect of the thickness of the Pd layer on joint properties of the lead-free solder joint with the electroless Ni/Pd/Au plated electrode. Solder ball joints were fabricated with Sn-3Ag-0.5Cu (mass%) lead-free solder balls and electroless Ni/Pd/Au and Ni/Au plated electrodes. Ball shear force and microstructure of the joint were investigated. The (Cu,Ni)6Sn5 reaction layer formed in the joint interface in all specimens. The thickness of the reaction layer decreased with increasing the thickness of the Pd layer. In the joint with a Pd layer 0.36 μm thick, the remained Pd layer was observed in the joint interface. In the joint, impact shear force decreased compared with that of the joint without the remained Pd layer. On the contrary, when the thickness of the Pd layer was less than 0.36 μm, the Pd layer was not remained in the joint interface and impact shear force improved. Impact shear force of the joint with the electroless Ni/Pd/Au plated electrode was higher than that with the electroless Ni/Au one.


Author(s):  
James W. VanGilder ◽  
Zachary R. Sheffer ◽  
Xuanhang Simon Zhang ◽  
Collyn T. O’Kane

Typical data center architectures utilize a raised floor; cooling airflow is pumped into an under-floor plenum and exits through perforated floor tiles located in front of IT equipment racks. The under-floor space is also a convenient place to locate critical building infrastructure, such as chilled-water piping and power and network cabling. Unfortunately, the presence of such objects can disrupt the distribution of cooling airflow. While the effects of other design parameters, such as room layout, plenum depth, perforated tile type, and leakage paths, have been systematically studied — and corresponding best-practices outlined, there is no specific advice in the literature with regard to the effect of under-floor infrastructure on airflow distribution. This paper studies the effects of such obstructions primarily through CFD analyses of several layouts based on actual facilities. Additionally, corresponding scenarios are analyzed using a Potential Flow Model (PFM), which includes a recently-proposed obstruction-modeling technique. It is found that under-floor obstructions significantly affect airflow distribution only when they are located very near perforated tiles and cooling units and occupy a substantial fraction of the total plenum depth.


Author(s):  
David Shaddock ◽  
Stanton Weaver ◽  
Ioannis Chasiotis ◽  
Binoy Shah ◽  
Dalong Zhong

The power density requirements continue to increase and the ability of thermal interface materials has not kept pace. Increasing effective thermal conductivity and reducing bondline thickness reduce thermal resistance. High thermal conductivity materials, such as solders, have been used as thermal interface materials. However, there is a limit to minimum bondline thickness in reducing resistance due to increased fatigue stress. A compliant thermal interface material is proposed that allows for thin solder bondlines using a compliant structure within the bondline to achieve thermal resistance <0.01 cm2C/W. The structure uses an array of nanosprings sandwiched between two plates of materials to match thermal expansion of their respective interface materials (ex. silicon and copper). Thin solder bondlines between these mating surfaces and high thermal conductivity of the nanospring layer results in thermal resistance of 0.01 cm2C/W. The compliance of the nanospring layer is two orders of magnitude more compliant than the solder layers so thermal stresses are carried by the nanosprings rather than the solder layers. The fabrication process and performance testing performed on the material is presented.


Author(s):  
Shinji Koyama ◽  
Yukinari Aoki ◽  
Ikuo Shohji

The effect of citric-acid surface modification on the bond strength of the solid-state bonded interface of tin and copper has been investigated by SEM observation of the interfacial microstructures and fractured surfaces. Citric-acid surface modification was carried out in a vacuum chamber at a bonding temperature of 383–473 K and a bonding pressure of 7 MPa (bonding time: 1800 s). The citric-acid surface modification decreased bonding temperature by 70 K at which bonded joints could be obtained and bond strength comparable with the base metal was achieved.


Author(s):  
Thomas J. Breen ◽  
Ed J. Walsh ◽  
Jeff Punch ◽  
Amip J. Shah ◽  
Niru Kumari ◽  
...  

As the energy footprint of data centers continues to increase, models that allow for “what-if” simulations of different data center design and management paradigms will be important. Prior work by the authors has described a multi-scale energy efficiency model that allows for evaluating the coefficient of performance of the data center ensemble (COPGrand), and demonstrated the utility of such a model for purposes of choosing operational set-points and evaluating design trade-offs. However, experimental validation of these models poses a challenge because of the complexity involved with tailoring such a model for implementation to legacy data centers, with shared infrastructure and limited control over IT workload. Further, test facilities with dummy heat loads or artificial racks in lieu of IT equipment generally have limited utility in validating end-to-end models owing to the inability of such loads to mimic phenomena such as fan scalability, etc. In this work, we describe the experimental analysis conducted in a special test chamber and data center facility. The chamber, focusing on system level effects, is loaded with an actual IT rack, and a compressor delivers chilled air to the chamber at a preset temperature. By varying the load in the IT rack as well as the air delivery parameters — such as flow rate, supply temperature, etc. — a setup which simulates the system level of a data center is created. Experimental tests within a live data center facility are also conducted where the operating conditions of the cooling infrastructure are monitored — such as fluid temperatures, flow rates, etc. — and can be analyzed to determine effects such as air flow recirculation, heat exchanger performance, etc. Using the experimental data a multi-scale model configuration emulating the data center can be defined. We compare the results from such experimental analysis to a multi-scale energy efficiency model of the data center, and discuss the accuracies as well as inaccuracies within such a model. Difficulties encountered in the experimental work are discussed. The paper concludes by discussing areas for improvement in such modeling and experimental evaluation. Further validation of the complete multi-scale data center energy model is planned.


Author(s):  
Shiladitya Chakravorty ◽  
Bahgat Sammakia ◽  
Varaprasad Calmidi

Improved performance of semiconductor devices in recent years has resulted in consequent increase in power dissipation. Hence thermal characterization of components becomes important from an overall thermal design perspective of the system. This study looks at a high performance non-isolated point of load power module (a DC to DC converter) meant for advanced computing and server applications. Thermal characteristics of the module were experimentally analyzed by placing the power module on a bare test board (with no insulation) inside a wind tunnel with thermocouples attached to it. There were three devices on this module that dissipate power. There were two FETs (Field Effect Transistors) and an inductor which can be considered as sources. The consolidated power dissipation from the module was calculated by measuring the input voltage and input current while keeping the output voltage and current constant. Temperatures at various points on the module and the test card were recorded for different air flow velocities and overall power dissipation. Subsequently this set up was numerically analyzed using a commercially available computational fluid dynamics (CFD) code with the objective of comparing the results with experimental data previously obtained.


Author(s):  
Yoshihiko Kanda ◽  
Yuji Oto ◽  
Yusuke Shiigi ◽  
Yoshiharu Kariya

The influence of cyclic strain-hardening exponents on fatigue ductility exponents for Sn-Bi solid solution alloys and Sn-Ag-Cu microsolder joints was investigated. In Sn-Bi solid solution alloys, the fatigue ductility exponent in Coffin-Manson’s law was confirmed to increase with a decrease in the cyclic strain-hardening exponent. On the other hand, in the Sn-Ag-Cu miniature solder joint, the fatigue ductility exponent increases with a rise in temperature and strain holding. Thus, the fatigue ductility exponents are closely related to the cyclic strain-hardening exponent: the former increases due to the depression of the latter with a rise in temperature and increase in intermetallic compound particle size during strain holding. The results differ for the creep damage mechanism (grain boundary fracture), which is the main reason for the life depression in large-size specimens.


Author(s):  
Preeti Mani ◽  
Ruander Cardenas ◽  
Vinod Narayanan

Submerged jet impingement boiling has the potential to enhance pool boiling heat transfer rates. In most practical situations, the surface could consist of multiple heat sources that dissipate heat at different rates resulting in a surface heat flux that is non-uniform. This paper discusses the effect of submerged jet impingement on the wall temperature characteristics and heat transfer for a non-uniform heat flux. A mini-jet is caused to impinge on a polished silicon surface from a nozzle having an inner diameter of 1.16 mm. A 25.4 mm diameter thin-film circular serpentine heater, deposited on the bottom of the silicon wafer, is used to heat the surface. Deionized degassed water is used as the working fluid and the jet and pool are subcooled by 20°C. Voltage drop between sensors leads drawn from the serpentine heater are used to identify boiling events. Heater surface temperatures are determined using infrared thermography. High-speed movies of the boiling front are recorded and used to interpret the surface temperature contours. Local heat transfer coefficients indicate significant enhancement upto radial locations of 2.6 jet diameters for a Reynolds number of 2580 and upto 6 jet diameters for a Reynolds number of 5161.


Sign in / Sign up

Export Citation Format

Share Document