Freeze-Thaw Durability of Portland Cement Concrete Subjected to Aircraft Deicer

2010 ◽  
Vol 152-153 ◽  
pp. 1856-1861 ◽  
Author(s):  
Hai Yan Ma ◽  
Hong Fa Yu ◽  
Wen Tao Cao ◽  
Kang Bai ◽  
Peng Zhou ◽  
...  

Influence of glycol, which is the main composition of the most frequently used aircraft dicer, on the freeze-thaw durability of Portland cement concrete were investigated. Freeze-thaw durability of Portland cement concrete was tested by accelerated freeze-thaw test. Four kinds of solutions, namely tap water, 3.5% NaCl solution, glycol solutions and a LBR-A type commercial aircraft deicer were employed to be the freezing-thawing mediums. Results show that freeze-thaw durability of concrete exposed to glycol solutions is closely related to the solution concentrations. Failure of concretes exposed to 3.5% glycol solution is similar to that of those exposed 3.5% NaCl solution, which are attributed to serious surface scaling. While damage of concrete exposed to 12.5% and 25% glycol solutions are postponed, and the durability of concrete are increased. Compared with glycol solution, the commercial aircraft deicer demonstrated much more negative effect to concrete freeze-thaw durability, and the degree even exceeds 3.5% NaCl solution. Consequently, the commercial aircraft deicer is not a kind of environmental friendly deicer as usually considered.

2009 ◽  
Vol 43 (7) ◽  
pp. 933-946 ◽  
Author(s):  
Xianming Shi ◽  
Laura Fay ◽  
Marijean M. Peterson ◽  
Zhengxian Yang

2016 ◽  
Vol 120 ◽  
pp. 465-472 ◽  
Author(s):  
Marcelo Gonzalez ◽  
Susan L. Tighe ◽  
Kathy Hui ◽  
Sonia Rahman ◽  
Arthur de Oliveira Lima

2004 ◽  
Vol 10 (1) ◽  
pp. 25-30
Author(s):  
Marta Kosior-Kazberuk ◽  
Walery Jezierski

Deterioration of concrete due to surface scaling is a very serious durability problem faced by the construction industry in cold environments. The experimental results of resistance to scaling due to cyclic freezing and thawing in the presence of 3 % NaCl solution (de‐icing agent) of not air‐entrained concrete with and without bituminous addition are presented and discussed in the paper. The results have been analysed using the analysis of variance and regression to verify the effect of addition content, number of freeze‐thaw cycles and the sort of cement on concrete ability to scaling. The statistical analysis showed that the bituminous addition significantly improves the scaling resistance of Portland cement concrete.


Author(s):  
Mary Vancura ◽  
Derek Tompkins ◽  
Lev Khazanovich

The SHRP 2 R21 project on composite pavement investigated the durability of various mixtures of portland cement concrete (PCC) used in the construction of a two-layer composite PCC pavement. Project consultants in Europe, where composite PCC over PCC pavement was more common than in the United States, advised the R21 research team to consider using the CIF (capillary suction, internal damage, and freeze–thaw) standard of the International Union of Laboratories and Experts in Construction Materials, Systems, and Structures (RILEM), Paris, rather than the familiar ASTM standards. As a result, the R21 project adopted the RILEM CIF standard to evaluate the freeze–thaw durability and salt scaling resistance of concretes. The research also explored a modified RILEM CIF test (using pure water instead of a sodium chloride solution in scaling tests) alongside the standard RILEM CIF tests. The paper describes this experience to expose other institutions and agencies in the United States to the RILEM standards for the freeze–thaw durability and salt scaling resistance testing of concretes.


Sign in / Sign up

Export Citation Format

Share Document