scaling resistance
Recently Published Documents


TOTAL DOCUMENTS

157
(FIVE YEARS 44)

H-INDEX

16
(FIVE YEARS 3)

Author(s):  
Li Liu ◽  
Laura Charlton ◽  
Yanqing Song ◽  
Tao Li ◽  
Xue-Mei Li ◽  
...  

Membrane distillation is a thermally driven separation process using hydrophobic, porous membranes. Among various problems faced by membrane distillation, scaling remains an unresolved challenge in treating streams of high salinity....


Author(s):  
Yongjie Liu ◽  
Thomas Horseman ◽  
Zhangxin Wang ◽  
Hassan A. Arafat ◽  
Huabing Yin ◽  
...  

2021 ◽  
Author(s):  
Greg Richards ◽  
Medhat Shehata

This paper presents a study of the effect of curing on the salt-scaling resistance of concrete containing supplementary cementitious materials (SCMs) under lab conditions. Two curing methods were examined: moist curing and wrapping in a tight plastic sheet. Wrapping concrete slabs in plastic was adopted to represent curing methods that do not supply the concrete with additional water. The two curing methods produced different scaling results; however, the outcomes did not change in terms of meeting or failing the acceptance limit. Curing in plastic wraps produced higher carbonation depth prior to exposing the sample to the salt solution. This could have contributed, partly, to the higher scaling obtained in wrapped samples, other than the sample with 40% high-calcium fly ash. For this sample, there is evidence that curing using plastic wraps maintained high alkali concentration in the surface concrete, which could have enhanced the pozzolanic activity of the fly ash at the surface.


2021 ◽  
Author(s):  
Medhat Shehata ◽  
Jonathan Andal ◽  
Philip Zacarias

<p>This study focuses on evaluating recycled concrete aggregate (RCA) of high quality produced through a protocol that preserves the original properties of the concrete to be recycled. Concrete with RCA of preserved quality was compared to concrete with commercially available RCA. A total of 29 mixes were tested with RCA replacement ranging from 30% to 100% of the coarse aggregate. Results showed that concrete with RCA of preserved quality performed significantly better in compressive strength, drying shrinkage, and salt scaling resistance. Furthermore, the use of 30% RCA with preserved quality produced concrete of comparable quality to that of concrete with natural aggregate.</p>


2021 ◽  
Author(s):  
Medhat Shehata ◽  
Jonathan Andal ◽  
Philip Zacarias

<p>This study focuses on evaluating recycled concrete aggregate (RCA) of high quality produced through a protocol that preserves the original properties of the concrete to be recycled. Concrete with RCA of preserved quality was compared to concrete with commercially available RCA. A total of 29 mixes were tested with RCA replacement ranging from 30% to 100% of the coarse aggregate. Results showed that concrete with RCA of preserved quality performed significantly better in compressive strength, drying shrinkage, and salt scaling resistance. Furthermore, the use of 30% RCA with preserved quality produced concrete of comparable quality to that of concrete with natural aggregate.</p>


2021 ◽  
Author(s):  
Medhat Shehata ◽  
Jonathan Andal ◽  
Philip Zacarias

<p>This study focuses on evaluating recycled concrete aggregate (RCA) of high quality produced through a protocol that preserves the original properties of the concrete to be recycled. Concrete with RCA of preserved quality was compared to concrete with commercially available RCA. A total of 29 mixes were tested with RCA replacement ranging from 30% to 100% of the coarse aggregate. Results showed that concrete with RCA of preserved quality performed significantly better in compressive strength, drying shrinkage, and salt scaling resistance. Furthermore, the use of 30% RCA with preserved quality produced concrete of comparable quality to that of concrete with natural aggregate.</p>


2021 ◽  
Author(s):  
Greg Richards ◽  
Medhat Shehata

This paper presents a study of the effect of curing on the salt-scaling resistance of concrete containing supplementary cementitious materials (SCMs) under lab conditions. Two curing methods were examined: moist curing and wrapping in a tight plastic sheet. Wrapping concrete slabs in plastic was adopted to represent curing methods that do not supply the concrete with additional water. The two curing methods produced different scaling results; however, the outcomes did not change in terms of meeting or failing the acceptance limit. Curing in plastic wraps produced higher carbonation depth prior to exposing the sample to the salt solution. This could have contributed, partly, to the higher scaling obtained in wrapped samples, other than the sample with 40% high-calcium fly ash. For this sample, there is evidence that curing using plastic wraps maintained high alkali concentration in the surface concrete, which could have enhanced the pozzolanic activity of the fly ash at the surface.


Sign in / Sign up

Export Citation Format

Share Document