Simulation of Nine-Spacer Nozzle’s Flow Field of Al Roll-Casting Using Coupled Fluid-Thermal Finite Element Analysis

2010 ◽  
Vol 159 ◽  
pp. 697-702
Author(s):  
Ying Zhou ◽  
Ya Xi Tan

A three-dimensional coupled fluid-thermal finite element simulation model has been developed to provide analyzing distribution of velocity and temperature of nine-spacer nozzle by using FEM simulation of FLOTRAN module in ANSYS 6.0. To explore fluid-thermal analysis of the flow fields of nine-spacer nozzle of aluminum roll-casting, stricter analysis of postprocessing result was conducted by MATLAB. It was concluded that flow field of nine-spacer nozzle was able to match cooling capacity of cast rollers, but nine-spacer nozzle’s geometric flaw didn’t suit for working in the case of speed increasing of the drawing-sheet and thickness reducing of the aluminium sheet during roll casting.

2010 ◽  
Vol 159 ◽  
pp. 691-696
Author(s):  
Ying Zhou ◽  
Ci Jun Shuai ◽  
Pei Feng

To explore fluid-thermal analysis of the flow fields of front-box and One-spacer nozzle of aluminum roll-casting, a three-dimensional finite element simulation model has been developed to provide analyzing distribution of velocity and temperature of outlet of nozzle, by using coupled fluid-thermal FEM simulation of FLOTRAN module in ANSYS 6.0. Stricter analysis of postprocessing result was conducted by MATLAB. It was concluded that flow field of one-spacer nozzle was able to match cooling capacity of cast rollers, and one-spacer nozzle could be optimized to work in the case of speed increasing of the drawing-sheet and thickness reducing of the aluminium sheet during roll casting.


2013 ◽  
Vol 850-851 ◽  
pp. 821-824 ◽  
Author(s):  
Jun Xiao ◽  
Xiao Yu Zhang ◽  
Jian Zhong Chen ◽  
Zhuo Qiu Li

Earth pressure can be divided into three kinds of load form by Spangler theory: vertical earth pressure, bed reaction and horizontal lateral pressure. According to Spangler theory, the level of static earth pressure presents a parabolic distribution in central angle bon both sides of the tubes. Used the glass steel pipe as the specific research object, Spangler theory applied to the three-dimensional buried tube model for finite element analysis, the analysis is divided into two situations: (1) the same soil, finite element analysis of different pipe diameter; (2) the same tube diameter, finite element analysis of different soil. This method can reasonably reflect the interaction of soil and structure, it is feasible. The complicated process of the finite element simulation of tube soil interaction can be avoided.


2007 ◽  
Vol 546-549 ◽  
pp. 741-744 ◽  
Author(s):  
Ying Zhou ◽  
Ming Hui Huang ◽  
Da Heng Mao ◽  
Tao Liang

Three-dimensional FEM simulations of fluid-thermal analysis of the fluid fields including the front-box and the 3C-style nozzle of aluminum roll-casting was performed by using FLOTRAN module of ANSYS. The advanced result analysis based on post-processing of ANSYS was conducted by MATLAB. According to the allowable inhomogeneity and its application of velocity and temperature at outlet, the most possible broken regions of aluminum sheets at outlet could be predicted in the case of speed increasing of the drawing-sheet and thickness reducing of the aluminium sheet during roll casting.


2010 ◽  
Vol 29-32 ◽  
pp. 1481-1487 ◽  
Author(s):  
Ying Zhou

A finite element model of fluid field of front-box and 3-spacer nozzle of aluminum roll-casting has been developed to provide a comparison of analyzing distribution of velocity and temperature of outlet of nozzle with variable velocity. The computation is performed by using coupled fluid-thermal FEM simulation of FLOTRAN module in ANSYS 6.0. The boundary conditions of the roll-casting model of fluid and thermal fields, were loaded on front-box and nozzle. Based on the postprocessing function of ANSYS, the strict result analysis was conducted by MATLAB. Results based on the allowable inhomogeneity of velocity and temperature of outlet show the most possible broken regions of outlet could be predicted in the case of speed increasing of the drawing-sheet and thickness reducing of the aluminium sheet. The profile parameters of the nozzle including distribution, shapes and sizes of the nozzle spacers, and shapes of inner nozzle must be optimized to be appropriate in high roll cast speed.


2010 ◽  
Vol 129-131 ◽  
pp. 640-644
Author(s):  
Ying Zhou

A three-dimensional finite element simulation model of fluid field including front-box and droplike-shape-spacer nozzle of aluminum roll-casting has been developed to provide analyzing distribution of velocity and temperature of outlet of nozzle. The computation was performed by using coupled fluid-thermal FEM simulation of FLOTRAN module in ANSYS 6.0. The boundary conditions of the roll-casting model of fluid and thermal fields, were loaded on front-box and nozzle. Based on the data from postprocessing function of ANSYS, the strict result analysis was conducted by MATLAB. Results based on the allowable inhomogeneity of velocity and temperature of outlet show the most possible broken regions of outlet could be predicted in the case of speed increasing of the drawing-sheet and thickness reducing of the aluminium sheet. Droplike-shape-spacer nozzle in this example only applied to normal speed, and must be optimized to be appropriate in high roll cast speed.


2007 ◽  
Vol 35 (3) ◽  
pp. 226-238 ◽  
Author(s):  
K. M. Jeong ◽  
K. W. Kim ◽  
H. G. Beom ◽  
J. U. Park

Abstract The effects of variations in stiffness and geometry on the nonuniformity of tires are investigated by using the finite element analysis. In order to evaluate tire uniformity, a three-dimensional finite element model of the tire with imperfections is developed. This paper considers how imperfections, such as variations in stiffness or geometry and run-out, contribute to detrimental effects on tire nonuniformity. It is found that the radial force variation of a tire with imperfections depends strongly on the geometrical variations of the tire.


Sign in / Sign up

Export Citation Format

Share Document