Placement Optimization for Thermal Performance of Embedded Power Chip Microwave Modules Using BP-GA

2011 ◽  
Vol 189-193 ◽  
pp. 639-642
Author(s):  
Sheng Zhang ◽  
Zhao Hua Wu ◽  
Hong Yan Huang ◽  
Pin Chen ◽  
Tang Wen Bi

In the thermal design of Embedded Power Chip Microwave Modules, the placement of chips on substrate has a significant effect on internal temperature field, thus, influence the reliability of the modules. In this paper, Based on BP-GA, the optimization for chips placement of EPCM is achieved by corresponding optimization program. To demonstrate the effectiveness of the results, ANSYS, finite element analysis (FEA) is carried out to assess the thermal field distribution of the optimization for chips placement. The result shows that the thermal field distributions of the optimization are consistent with the FEA results. The internal highest temperature of the initial placements is 90.369°C. After optimization, the internal highest temperature is 86.128°C, the highest temperature be reduced more than 5°C. It can effectively deal with the problem about optimize the thermal placement of EPCM chips, and improves the internal thermal distribution.

2011 ◽  
Vol 189-193 ◽  
pp. 2269-2273
Author(s):  
Chun Yue Huang ◽  
Tian Ming Li ◽  
Ying Liang ◽  
He Geng Wei

In the thermal design of embedded multi-chip module (MCM), the placement of chips has a significant effect on temperature field distributing, thus influences the reliability of the embedded MCM. The thermal placement optimization of chips in embedded MCM was studied in this paper, the goal of this work is to decrease temperature and achieve uniform thermal field distribution within embedded MCM. By using ANSYS the finite element analysis model of embedded MCM was developed, the temperature field distributing was calculated. Based on genetic algorithms, chips placement optimization algorithm of embedded MCM was proposed and the optimization chips placement of embedded MCM was achieved by corresponding optimization program. To demonstrate the effectiveness of the obtained optimization chips placement, finite element analysis (FEA) was carried out to assess the thermal field distribution of the optimization chips placement in embedded MCM by using ANSYS. The result shows that without chips placement optimizing the maximum temperature and temperature difference in embedded MCM model are 87.963°C and 2.189°C respectively, by using chips placement optimization algorithm the maximum temperature drop than the original 0.583°C and the temperature difference is only 0.694°C . It turns out that the chip placement optimization approach proposed in this work can be effective in providing thermal optimal design of chip placement in embedded MCM.


2011 ◽  
Vol 52-54 ◽  
pp. 1411-1414 ◽  
Author(s):  
Bo Chen

Thermal design and analysis of a satellite borne FPGA is described in this paper. Thermal-conductive glue, vias and an aluminum bar were used to the FPGA and the PCB under the FPGA in order to help conduct the heat of the FPGA to heat sink. The results of finite element analysis showed that the case temperature of the FPGA decreased from 132.5°C to 55.4°C and the junction temperature decreased from 136.1°C to59.0 °C after the thermal design, which matches the requirements of thermal design.


2001 ◽  
Vol 123 (3) ◽  
pp. 173-181 ◽  
Author(s):  
Calvin Chen ◽  
Marc Hodes ◽  
Lou Manzione

A means to properly size rectangular heat spreaders between a dielectric layer connected to thermal ground and a power device is developed by modeling the problem as a thermal resistance network. Generalized formulas and nondimensional charts to optimize heat spreader thickness and footprint are presented. The power device and heat spreader are assumed to be (concentric) rectangular solids of arbitrary length, width and thickness. The nondimensional results are validated by finite element analysis (FEA) and examples demonstrate the utility of the methodology to thermal design engineers.


2019 ◽  
Vol 2019 ◽  
pp. 1-9
Author(s):  
Shuai Gao ◽  
Guoqing Zhu ◽  
Yunji Gao ◽  
Guoqiang Chai ◽  
Jinju Zhou

In this paper, the finite element analysis was firstly employed to investigate the thermal analysis on two fireproof sealing models with ANSYS software under HC standard temperature-time condition. The main thermal parameters were analyzed and obtained, including temperature field, thermal flux, and thermal gradient. After comparing the two fireproof sealing models, the major conclusions are summarized as follows: In terms of temperature field, the temperature on the left side of the first model ranges from 60 to 524°C in. In contrast, the highest temperature on the left side of the second model eventually reaches below 151°C. Moreover, the vectors of thermal gradient in the first model are compared with the second model, and the temperature gradient disturbance is more obvious in the second fireproof sealing model, which is better to slow down temperature spreading. The accelerated speed of E1 and G1 is 0.0096°C/s and 0.0619°C/s partly, which are far more than C2 and F2 with values of 0.0028°C/s and 0.0078°C/s, respectively. In a word, the performance of the first fireproof sealing model is inferior to the second fireproof sealing model. The conclusions of the study are meaningful to improve the thermodynamic performance of the fireproof sealing in the converter station.


2015 ◽  
Vol 1120-1121 ◽  
pp. 1089-1092
Author(s):  
Qing Dong Qin

The electricity consuming of aluminium electrolysis cell is affected by the voltage drop of anode steel claws during the aluminium electrolysis course. The resistivity of anode steel claws is affected by the temperature. In the present study, the thermal field distribution of anode steel claws was studied by finite element analysis. The results show that the thermal energy of anode steel claws come from anode carbon blocks and environment. The temperature of steel claws less than 1/3 height is affected by anode carbon blocks, and the other part is affected by surrounding temperature. According the results, the principle of the new anode steel claw design is proposed.


Sign in / Sign up

Export Citation Format

Share Document