Numerical Analysis about Flexural Strengthening Reinforced Concrete Beams by Bolting Steel Plates

2011 ◽  
Vol 217-218 ◽  
pp. 1658-1662
Author(s):  
Xiao Dan Liu ◽  
Sheng Wang Hao ◽  
Yan Yan Li

This paper presents a three-dimensional nonlinear finite elemental analysis about the reinforcement concrete beams strengthened by bolting steel plate, which is a new strengthening method by anchoring plate to beam surface but not using any glue to help bonding. The contact effects between the steel plate with reinforced concrete beam surface was simulated by developing the contact elements. The effects of the plate thickness and the collocation of anchor bolts were investigated. The damage evolution about variable collocation of anchor bolts were investigated. It is declared that the collocation of anchor bolts play an obvious effects on the flexural capacity of strengthened beams, but the plate thickness give a little influence on it.

2012 ◽  
Vol 166-169 ◽  
pp. 1807-1810
Author(s):  
Xue Song Gao ◽  
Dong Hui Huo ◽  
Shao Hua Lv ◽  
Xu Zhao

This paper presents a three-dimensional nonlinear finite elemental analysis about the reinforcement concrete beams strengthened by bolting steel plate. The contact effects between the steel plate with reinforced concrete beam surface was simulated by developing the contact elements. The effect of strengthening is analyzed and the effects of the deformation and stress distribution of anchor bolt on the failure mode were investigated. It is declared that this strengthening method can obviously improve the capacity and stiffness of beam, and the flexural deformation of anchor bolt is key problem inducing the failure of strengthened beam. This template explains and demonstrates how to prepare your camera-ready paper for Trans Tech Publications. The best is to read these instructions and follow the outline of this text.


2020 ◽  
Vol 10 (3) ◽  
pp. 822 ◽  
Author(s):  
Shatha Alasadi ◽  
Payam Shafigh ◽  
Zainah Ibrahim

The purpose of this paper is to investigate the flexural behavior of over-reinforced concrete beam enhancement by bolted-compression steel plate (BCSP) with normal reinforced concrete beams under laboratory experimental condition. Three beams developed with steel plates were tested until they failed in compression compared with one beam without a steel plate. The thicknesses of the steel plates used were 6 mm, 10 mm, and 15 mm. The beams were simply supported and loaded monotonically with two-point loads. Load-deflection behaviors of the beams were observed, analyzed, and evaluated in terms of spall-off concrete loading, peak loading, displacement at mid-span, flexural stiffness (service and post-peak), and energy dissipation. The outcome of the experiment shows that the use of a steel plate can improve the failure modes of the beams and also increases the peak load and flexural stiffness. The steel development beams dissipated much higher energies with an increase in plate thicknesses than the conventional beam.


2021 ◽  
Vol 318 ◽  
pp. 03016
Author(s):  
Khalid I. Qaddoory ◽  
Ahmed A. Mansor ◽  
Ahlam S. Mohammed ◽  
Bilal J. Noman

In the past few years, new techniques have emerged using steel plates instead of traditional reinforcement in the reinforced concrete beams. This study deals with using a new method for reinforced concrete beams using steel plates instead of traditional steel bars with different thicknesses of (4, 5, and 6 mm) placed vertically inside the lower part of the beam. Four reinforced concrete beams were cast and tested under a two-point load. All beams had the same cross-sectional area of reinforcement and dimensions of 2100 mm in length, 350 mm in height, and 250 in width. The results showed that as the thickness of the steel plate increases, the samples would have greater resistance until more deflection is produced. In addition, there is a reduction in the crack load, ultimate load, and yield load when replacing reinforcing bars with steel plates. In which, a reduction in crack load by about 11.1, 15.5, and 22.2% plate thicknesses of 4,5,6 mm respectively, compared to reference beam that had a deformed steel bar (Dia. 16 mm). In addition, a reduction in yielding load was observed about 42, 53, and 60% for steel plate thickness of 4, 5, and 6 mm respectively, compared to the reference model. Finally, the cracks for all the steel plate specimens compared to reference specimens were wider and smaller.


2009 ◽  
Vol 2009 ◽  
pp. 1-13 ◽  
Author(s):  
Kasidit Chansawat ◽  
Tanarat Potisuk ◽  
Thomas H. Miller ◽  
Solomon C. Yim ◽  
Damian I. Kachlakev

Three-dimensional finite element (FE) models are developed to simulate the behavior of full-scale reinforced concrete beams strengthened with glass and carbon fiber-reinforced polymer sheets (an unstrengthened control beam, a flexural-strengthened beam, a shear-strengthened beam, and a beam with both shear and flexural strengthening). FE models use eight-node isoparametric elements with a smeared cracking approach for the concrete and three-dimensional layered elements to model the FRP composites. Analysis results are compared with data obtained from full-scale beam tests through the linear and nonlinear ranges up to failure. It was found that the FE models could identify qualitatively trends observed in the structural behavior of the full-scale beams. Predicted crack initiation patterns resemble the failure modes observed for the full-scale beam tests.


2013 ◽  
Vol 6 (1) ◽  
pp. 36-49
Author(s):  
Ali Sabah AL-Amili

In this work aims at studying the influence of steel plate on the deflection of self- compacted reinforced concrete beams was investigated experimentally in this study to know the flexural behavior of these beams. Eight simply supported reinforced concrete beam were tested under the action of two point loads .The deflections of the beams with and without plate are measured. The steel plates of thickness (3 mm) with dimensions ( 170 × 350 mm) were used. These plates were sticked on the concrete beams using epoxy. The steel plate inside the beam was sticked with and without epoxy (epoxy type EP), while the beams were taken with and without opening (10 mm diameter). The results show that the plate increased the capacity of the beam by increased the value of failure load. Hence, the beam with internal plate with epoxy increased the failure load by 34.2% than beam without plate , and 24.6% than beam with internal plate without epoxy , and 19.7% than beam with external plate with epoxy .


2019 ◽  
Vol 5 (12) ◽  
pp. 2569-2578 ◽  
Author(s):  
Ali Sabah Al Amli ◽  
Laith Shakir ◽  
Ali Abdulredha ◽  
Nadhir Al-Ansari

This study presents experimental work including an investigation conducted on five simply supported reinforced concrete beams under pure torsion. First beam without strengthening as a control beam. The other four beams were strengthened externally by bolted thin steel plates. For this test the load was applied gradually. The torque was increased gradually up to failure of the beam.  The variables were the thickness and height of the steel plate that was externally connected to both sides of the rectangular reinforced concrete beam. The test results for the beams discussed are based on torque-twist behavior. The experimental results show that the attachment of thin steel plates by mechanical means to beams provides a considerable improvement in the torsional behavior of the reinforced concrete beams. Comparable to the reference beam, the maximum increase in the cracking and the ultimate torque of the composite beam was recorded for the reinforced concrete beam that strengthen by steel plate of (150) mm height, (2mm) thickness and (50mm) spacing between shear connectors (B1). The results revealed that the cracking torque, ultimate torque, global stiffness of beam and beam ductility for all composite beams increase with the increase of the plate's thickness, plate's height.


2018 ◽  
Vol 21 (13) ◽  
pp. 1977-1989 ◽  
Author(s):  
Tengfei Xu ◽  
Jiantao Huang ◽  
Arnaud Castel ◽  
Renda Zhao ◽  
Cheng Yang

In this article, experiments focusing at the influence of steel–concrete bond damage on the dynamic stiffness of cracked reinforced concrete beams are reported. In these experiments, the bond between concrete and reinforcing bar was damaged using appreciate flexural loads. The static stiffness of cracked reinforced concrete beam was assessed using the measured load–deflection response under cycles of loading and unloading, and the dynamic stiffness was analyzed using the measured natural frequencies with and without sustained loading. Average moment of inertia model (Castel et al. model) for cracked reinforced beams by taking into account the respective effect of bending cracks (primary cracks) and the steel–concrete bond damage (interfacial microcracks) was adopted to calculate the static load–deflection response and the natural frequencies of the tested beams. The experimental results and the comparison between measured and calculated natural frequencies show that localized steel–concrete bond damage does not influence remarkably the dynamic stiffness and the natural frequencies both with and without sustained loading applied. Castel et al. model can be used to calculate the dynamic stiffness of cracked reinforced concrete beam by neglecting the effect of interfacial microcracks.


2012 ◽  
Vol 214 ◽  
pp. 306-310
Author(s):  
Han Chen Huang

This study proposes a artificial neural network with genetic algorithm (GA-ANN) for predicting the torsional strength of reinforced concrete beam. Genetic algorithm is used to the optimal network structure and parameters. A database of the torsional failure of reinforced concrete beams with a rectangular section subjected to pure torsion was obtained from existing literature for analysis. This study compare the predictions of the GA-ANN model with the ACI 318 code used for analyzing the torsional strength of reinforced concrete beam. The results show that the proposed model provides reasonable predictions of the ultimate torsional strength of reinforced concrete beams and offers superior torsion accuracy compared to that of the ACI 318-89 equation.


Sign in / Sign up

Export Citation Format

Share Document