Study on Topology Optimum Design of Baffle of Scraper Conveyer

2011 ◽  
Vol 228-229 ◽  
pp. 96-100
Author(s):  
Yan Hui Qie ◽  
Bo Liu ◽  
Xiu Hong Wang ◽  
Hai Peng Jia ◽  
Jian Peng Li

At present the study on the application of the topology optimum design in scraper conveyor is still under development. In this paper the topology optimization based on the homogenization method is applied to the design of the baffle on the scraper conveyer, which can provide a valuable conceptual design scheme for the selection of the baffle pattern. In conjunction with the homogenization theory and Finite Element Method (FEA), the mathematical models for designing the baffle by the minimizing mean compliance are developed in this paper. By applying the topology optimum design to the baffle, the topology optimization based on the homogenization method is proved to be reliable and practical at the conceptual design stage of baffle.

2011 ◽  
Vol 201-203 ◽  
pp. 534-538
Author(s):  
Yan Hui Qie ◽  
Bo Liu ◽  
Xiu Hong Wang ◽  
Xiao Lei Li

At present the study on the application of the topology optimum design in scraper conveyor is still under development. In this paper the topology optimization based on the Solid Isotropic Material Penalization (SIMP) is applied to the design of the middle pan, which can provide a valuable conceptual design scheme for the selection of the middle pan pattern. In conjunction with the homogenization theory and Finite Element Method (FEA), the mathematical models for designing the middle pan by maximizing the rigidity are developed in this paper. By applying the topology optimum design to the middle pan, the topology optimization based on the SIMP method is proved to be reliable and practical at the conceptual design stage of middle pan.


2014 ◽  
Vol 10 (1) ◽  
pp. 19
Author(s):  
Elvis Adril ◽  
Nasirwan - ◽  
Tri Wibowo ◽  
Julnaidi -

Sleeve (Boom) on Crawler Crane is the main equipment that serves the weight at the time of appointment (Hoisting).The problem which is founded is a fracture at the boom while lift 6 Tons of weight while the optimum design of equipment is 50 tons. The aim of this research is to found the root cause of the fracture by using photo documentation fractografi (microfractografi and macrofractografi), and hardness tests, and test the chemical composition at the surface faults boom crane. We used Finite element method (FEM) to form simulated load. The results is that the porblem accured because of error while read the load chart and error in SOP


2015 ◽  
Vol 07 (06) ◽  
pp. 1550085 ◽  
Author(s):  
Z. C. He ◽  
G. Y. Zhang ◽  
L. Deng ◽  
Eric Li ◽  
G. R. Liu

The node-based smoothed finite element method (NS-FEM) proposed recently has shown very good properties in solid mechanics, such as providing much better gradient solutions. In this paper, the topology optimization design of the continuum structures under static load is formulated on the basis of NS-FEM. As the node-based smoothing domain is the sub-unit of assembling stiffness matrix in the NS-FEM, the relative density of node-based smoothing domains serves as design variables. In this formulation, the compliance minimization is considered as an objective function, and the topology optimization model is developed using the solid isotropic material with penalization (SIMP) interpolation scheme. The topology optimization problem is then solved by the optimality criteria (OC) method. Finally, the feasibility and efficiency of the proposed method are illustrated with both 2D and 3D examples that are widely used in the topology optimization design.


2021 ◽  
Vol 1858 (1) ◽  
pp. 012081
Author(s):  
Sumar Hadi Suryo ◽  
Rachmat Suryadi Sastra ◽  
Muchammad ◽  
Harto

2021 ◽  
Author(s):  
Krzysztof Fulawka ◽  
Witold Pytel ◽  
Piotr Mertuszka ◽  
Marcin Szumny

<p>Underground laboratories provide a unique environment for various industries and are a suitable place for developing new technologies for mining, geophysical surveys, radiation detection, as well as many other studies and measurements. Unfortunately, any operation in underground excavations is associated with exposure to many hazards not necessarily encountered in surface laboratories. One of the most dangerous events observed in underground conditions is the dynamic manifestation of rock mass pressure in form of rockburst, roof falls and mining tremors. Therefore, proper evaluation of geomechanical risk is a key element ensuring the safety of work in underground conditions. Finite Element Method-based numerical analysis is one of the tools which allow conducting a detailed geomechanical hazard assessment already at the object design stage. The results of such calculations may be the basis for the implementation of preventive measures before running up the underground facility.</p><p>Within this paper, the three-dimensional FEM-based numerical analysis of large-scale underground laboratory located in deep Polish copper mine was presented. The calculations were made with GTS NX software, which allowed determining the changes in the safety factor in surrounding of the analyzed area. Finally, the possibility of underground laboratory establishment, with respect to predicted stress and strain conditions, were determined.</p>


2020 ◽  
Vol 63 (1) ◽  
pp. 1-20
Author(s):  
S. J. van den Boom ◽  
J. Zhang ◽  
F. van Keulen ◽  
A. M. Aragón

AbstractDuring design optimization, a smooth description of the geometry is important, especially for problems that are sensitive to the way interfaces are resolved, e.g., wave propagation or fluid-structure interaction. A level set description of the boundary, when combined with an enriched finite element formulation, offers a smoother description of the design than traditional density-based methods. However, existing enriched methods have drawbacks, including ill-conditioning and difficulties in prescribing essential boundary conditions. In this work, we introduce a new enriched topology optimization methodology that overcomes the aforementioned drawbacks; boundaries are resolved accurately by means of the Interface-enriched Generalized Finite Element Method (IGFEM), coupled to a level set function constructed by radial basis functions. The enriched method used in this new approach to topology optimization has the same level of accuracy in the analysis as the standard finite element method with matching meshes, but without the need for remeshing. We derive the analytical sensitivities and we discuss the behavior of the optimization process in detail. We establish that IGFEM-based level set topology optimization generates correct topologies for well-known compliance minimization problems.


Sign in / Sign up

Export Citation Format

Share Document