Crystal Plasticity Finite Element Modelling of BCC Deformation Texture in Cold Rolling

2008 ◽  
Vol 32 ◽  
pp. 251-254 ◽  
Author(s):  
Hei Jie Li ◽  
Jing Tao Han ◽  
Zheng Yi Jiang ◽  
Hua Chun Pi ◽  
Dong Bin Wei ◽  
...  

Taylor-type and finite element polycrstal models have been embedded into the commercial finite element code ABAQUS to carry out the crystal plasticity finite element modelling of BCC deformation texture based on rate dependent crystal constitutive equations. Initial orientations measured by EBSD were directly used in crystal plasticity finite element model to simulate the development of rolling texture of IF steel under various reductions. The calculated results are in good agreement with the experimental values. The predicted and measured textures tend to sharper with an increase of reduction, and the texture obtained from the Taylor-type model is much stronger than that by finite element model. The rolling textures calculated with 48 {110}<110>, {112}<111> and {123}<111> slip systems are close to the EBSD results.

2007 ◽  
Vol 558-559 ◽  
pp. 1213-1218
Author(s):  
Cheng Wu Zheng ◽  
Na Min Xiao ◽  
Dian Zhong Li ◽  
Yi Yi Li

The kinetics and microstructure evolution during static recrystallization (SRX) of hot-deformed austenite in a low carbon steel are simulated by coupling a cellular automaton (CA) model with a crystal plasticity finite element model (CPFEM). The initial deformed characteristics, which include the stored energy of deformation and the crystallographic orientation induced by a plane strain hot compression are simulated using a crystal plasticity finite element model. These data are mapped onto the CA regular lattices as the initial parameters for SRX simulation. The coupled simulation results reveal that the heterogeneous distribution of the stored energy of deformation results in non-uniform nucleation and a slower kinetics. The influence of non-uniform distribution in stored energy on the SRX kinetics and microstructure evolution is discussed based on a microstructural path (MP) analysis.


Sign in / Sign up

Export Citation Format

Share Document