mesoscale simulation
Recently Published Documents


TOTAL DOCUMENTS

194
(FIVE YEARS 38)

H-INDEX

29
(FIVE YEARS 3)

MAUSAM ◽  
2021 ◽  
Vol 57 (1) ◽  
pp. 79-96
Author(s):  
M. MANDAL ◽  
U. C. MOHANTY

& 29 vDrwcj] 1999 dks mM+hlk ds rV ij vk;k egkpØokr mM+hlk ds vc rd ds bfrgkl dk lcls izpaM rwQku Fkk ftldh 250 fd-eh- izfr ?kaVk dh rhoz xfr okyh iouksa us jkT; ds 12 rVh; ftyksa dks rgl&ugl dj MkykA rwQku ds LFky ls Vdjkus ds i'pkr~ 36 ?kaVs ls Hkh vf/kd le; rd iouksa dh izpaMrk cuh jghA bl rwQku ls tku eky dk dkQh uqdlku gqvkA yxHkx 10]000 yksxksa dh tkusa xbZA bl v/;;u esa rwQku ds eslksLdsy izfr:Ik dks csgrj cukus ds fy, dqN egRoiw.kZ igyqvksa dh tk¡p gsrq O;kid la[;kRed iz;ksx fd, x, gSaA bu igyqvksa esa xSj nzoLFkSfrd xfrd] fun’kZ {kSfrt foHksnu vkSj egRoiw.kZ izR;{k izfØ;kvksa ds izkpyhdj.k 'kkfey gSaA rwQku dk 5 fnolh; izfr:Ik ¼123 ?kaVksa ds yxkrkj lekdyu½ rS;kj djus ds fy, eslksLdsy fun’kZ ,e- ,e- 5 dk mi;ksx fd;k x;k gSA blesa le:ih foHksnu ¼30 fd-eh-½ vkSj le:ih le; J`a[kyk ds lkFk nzoLFkSfrd ¼,p-,l-½ rFkk xSj nzoLFkSfrd ¼,u- ,l-½ xfrdksa ds lg;ksx ls rwQku ds izfr:i  esa xSj nzoLFkSfrdrk ds izHkko dh tk¡p dh xbZ gSA bl fof/k ls rwQku vkSj fo’ks"k :Ik ls bldh rhozrk dk xSj nzoLFkSfrd xfrdksa ds lkFk lgh izfr:i.k gksrk gSA xSj nzoLFkSfrd xfrdksa ds lkFk 90 fd-eh-] 60 fd-eh- vkSj 30 fd-eh- ds foHksnuksa ij rwQku dk izfr:i.k  djrs gq, fun’kZ dh laof/kZr {kSfrt foHksnu dh egRrk dh tk¡p dh xbZ gS vkSj rwQku ds izfr:i.k esa bldk izR;{k izHkko ns[kk x;k gSA egRoiw.kZ izR;{k izfØ;k okys diklh laogu xzgh; ifjlhek Lrj ¼ih- ch- ,y-½ vkSj fofdj.k gsrq fun’kZ esa miyC/k izkpyhÑr ;kstukvksa ds csgrj lEHkkO; leUo; dk irk yxkus ds fy, la[;kRed iz;ksx Hkh fd, x,A lh- lh- ,e- 2 fofdj.k izkpyhÑr ;kstuk lesr xzsy diklh laogu vkSj gk¡x&isu ih- ch- ,y- ;kstuk ds lkFk leUo;u okyh ;kstuk ds vU; ijhf{kr ;kstukvksa dh rqyuk esa lcls csgrj ifj.kkeksa dk irk pyk gSA The super cyclone that crossed Orissa coast on 29 October 1999 was the most intense storm in the history of Orissa with 12 coastal districts of the state were battered by winds reaching 250 kmph. The fury of winds continued for more than 36 hours after landfall of the storm. The storm caused huge damage to properties and nearly        10,000 people lost their lives. In the present study, extensive numerical experiments are conducted to investigate some important aspects that may lead to the improvement in mesoscale simulation of the storm. The aspects that are addressed here include non-hydrostatic dynamics, model horizontal resolution and parameterization of important physical processes. The mesoscale model MM5 is used to produce 5-day simulation of the storm. The influence of non-hydrostaticity is investigated by simulating the storm with hydrostatic (HS) and non-hydrostatic (NS) dynamics at same resolution (30 km) and with same time step. The storm, in particular its intensity is better simulated with non-hydrostatic dynamics. The importance of increasing model horizontal resolution is investigated by simulating the storm at 90 km, 60 km and 30 km resolutions with non-hydrostatic dynamics and found to have perceptible impact in simulation of the storm. Numerical experiments also are conducted to find the best possible combination of the parameterization schemes available in the model for the important physical processes cumulus convection, planetary boundary layer (PBL) and radiation. The combination of Grell cumulus convection and Hong-Pan PBL scheme along with CCM2 radiation parameterization scheme is found to provide the best result compared to the other schemes tested.


2021 ◽  
Author(s):  
Michael Weger ◽  
Bernd Heinold ◽  
Alfred Wiedensohler ◽  
Maik Merkel

Abstract. There is a gap between the need for city-wide air-quality simulations considering the intra-urban variability and mircoscale dispersion features and the computational capacities that conventional urban microscale models require. This gap can be bridged by targeting model applications on the gray zone situated between the mesoscale and large-eddy scale. The urban dispersion model CAIRDIO is a new contribution to the class of computational-fluid dynamics models operating in this scale range. It uses a diffuse-obstacle boundary method to represent buildings as physical obstacles at gray-zone resolutions in the order of tens of meters. The main objective of this approach is to find an acceptable compromise between computationally inexpensive grid sizes for spatially comprehensive applications and the required accuracy in the description of building and boundary-layer effects. For this purpose, CAIRDIO is applied in dispersion simulation of black carbon and particulate matter for an entire mid-size city using an uniform horizontal resolution of 40 m in this paper. For evaluation, the simulation results are compared with measurements from 5 operational air monitoring stations, which are representative for the urban background and high-traffic roads, respectively. Moreover, the comparison includes the mesoscale host simulation, which provides the boundary conditions. The temporal variability of the concentration measurements at the background sites was largely influenced only by the characteristics of the mixing layer. As a consequence, the model results were not significantly dependent on spatial resolution, so that the mesoscale simulation also performed reasonably well. At the traffic sites, however, concentrations were in addition markedly influenced by the proximity to road-traffic sources and the surrounding building environment. Here, the mesoscale simulation indiscriminately reproduced almost the same urban-background profiles, which resulted in a large positive model bias. On the other hand, the CAIRDIO simulation was able to respond to the significantly amplified diurnal variability with its pronounced rush-hour peaks. This resulted in a consistent improvement of the model deviation to mea- surements compared to the mesoscale simulation. Nevertheless, discrepancies to measurements remain in the 40 m-CAIRDIO simulation, e.g., an underestimation of peak concentrations at two traffic sites inside narrow street canyons. To further research resolution sensitivity, the horizontal grid spacing of locally nested CAIRDIO domains is refined down to 5 m. While for the street canyons the representation of peak concentrations can be improved using horizontal grid spacings of up to 10 m, no further improvements beyond this resolution can be observed. This suggests that the too low peak concentrations with the default grid spacing of 40 m result from an inadequate representation of the traffic emissions inside narrow street canyons. If the total gain in accuracy due to the grid refinements is put in relation to the remaining model error, the improvements are only modest. In conclusion, the proposed gray-scale modeling is a promising downscaling approach for urban air-quality applications. Nevertheless, the results also show that aspects other than the actual resolution of flow patterns and numerical effects can determine the simulations at the urban microscale.


2021 ◽  
Author(s):  
Torsten Hädrich ◽  
Daniel Banuti ◽  
Wojtek Pałubicki ◽  
Sören Pirk ◽  
Dominik Michels
Keyword(s):  

2021 ◽  
Vol 324 ◽  
pp. 94-99
Author(s):  
Le Tang ◽  
Die Hu ◽  
Sheng Zhou ◽  
Chao Ge ◽  
Hai Fu Wang ◽  
...  

Mesoscale simulation is conducted to investigate the effect of force chains between metal particles on the mechanical behavior of aluminum-tungsten-polytetrafluoroethylene (Al/W/PTFE) granular composite under a strain-controlled loading. A two-dimensional model followed the random distribution of particles is developed. Dynamic simulations are performed with variations in the size of Al particles to reveal the strength and fracture mechanisms of the composites. The results indicate that, force chains governed by the number and the size of metal particles significantly affects the global compressive response and macro-cracks propagation. The stability and reconstruction of mesoscale force chains explain the phenomenon that a higher strength is observed in the material with fine Al particles. Combined with the angle between particles, we examine the properties of force chains and the network as they evolve during the course of the deformation. Findings indicate that reactive composites tend to produce shorter chains, and straighter force chains with a smaller force angle result in a macroscopically stronger granular material.


Urban Climate ◽  
2021 ◽  
Vol 37 ◽  
pp. 100850
Author(s):  
Yu Ting Kwok ◽  
Robert Schoetter ◽  
Cécile de Munck ◽  
Kevin Ka-Lun Lau ◽  
Man Sing Wong ◽  
...  

Author(s):  
Xin Li ◽  
Zhaoxia Pu ◽  
Zhiqiu Gao

AbstractHorizontal boundary layer roll vortices are a series of large-scale turbulent eddies that prevail in a hurricane’s boundary layer. In this paper, a one-way nested sub-kilometer-scale large eddy simulation (LES) based on the Weather Research and Forecasting model (WRF) was used to examine the impact of roll vortices on the evolution of Hurricane Harvey around its landfall from 0000z on 25 to 1800z 27 August 2017. The simulation results imply that the turbulence in the LES can be attributed mainly to roll vortices. With the representation of roll vortices, the LES simulation provided a better simulation of hurricane wind vertical structure and precipitation. In contrast, the mesoscale simulation with the YSU PBL scheme overestimated the precipitation for the hurricane over the ocean.Further analysis indicates that the roll vortices introduced a positive vertical flux and thinner inflow layer, whereas a negative flux maintained the maximum tangential wind at around 400 m above ground. During hurricane landfall, the weak negative flux maintained the higher wind in the LES simulation. The overestimated low-level vertical flux in the mesoscale simulation with the YSU scheme led to overestimated hurricane intensity over the ocean and accelerated the decay of the hurricane during landfall. Rainfall analysis reveals that the roll vortices led to a weak updraft and insufficient water vapor supply in the LES. For the simulation with the YSU scheme, the strong updraft combined with surplus water vapor eventually led to unrealistic heavy rainfall for the hurricane over the ocean.


2021 ◽  
pp. 2100006
Author(s):  
Jihao Wang ◽  
Zhiyang Xu ◽  
Jia Chen ◽  
Xiaozhen Yang ◽  
Seeram Ramakrishna ◽  
...  

2021 ◽  
Vol 116 ◽  
pp. 103895
Author(s):  
Kumar Avadh ◽  
Punyawut Jiradilok ◽  
John E. Bolander ◽  
Kohei Nagai

Sign in / Sign up

Export Citation Format

Share Document