Kernel Orthogonal Neighborhood Preserving Discriminant Analysis

2011 ◽  
Vol 339 ◽  
pp. 571-574
Author(s):  
Xing Zhu Liang ◽  
Jing Zhao Li ◽  
Yu E Lin

Several orthogonal feature extraction algorithms based on local preserving projection have recently been proposed. However, these methods still are linear techniques in nature. In this paper, we present nonlinear feature extraction method called Kernel Orthogonal Neighborhood Preserving Discriminant Analysis (KONPDA). A major advantage of the proposed method is that it is regarded every column of the kernel matrix as a corresponding sample. Then running KONPDA in kernel matrix, nonlinear features can be extracted. Experimental results on ORL database indicate that the proposed KONPDA method achieves higher recognition rate than the ONPDA method and other kernel-based learning algorithms.

2014 ◽  
Vol 533 ◽  
pp. 247-251
Author(s):  
Hai Bing Xiao ◽  
Xiao Peng Xie

This paper deals with the study of Locally Linear Embedding (LLE) and Hessian LLE nonlinear feature extraction for high dimensional data dimension reduction. LLE and Hessian LLE algorithm which reveals the characteristics of nonlinear manifold learning were analyzed. LLE and Hessian LLE algorithm simulation research was studied through different kinds of sample for dimensionality reduction. LLE and Hessian LLE algorithm’s classification performance was compared in accordance with MDS. The simulation experimental results show that LLE and Hessian LLE are very effective feature extraction method for nonlinear manifold learning.


2019 ◽  
Vol 2019 ◽  
pp. 1-19
Author(s):  
Mingai Li ◽  
Hongwei Xi ◽  
Xiaoqing Zhu

Due to the nonlinear and high-dimensional characteristics of motor imagery electroencephalography (MI-EEG), it can be challenging to get high online accuracy. As a nonlinear dimension reduction method, landmark maximum variance unfolding (L-MVU) can completely retain the nonlinear features of MI-EEG. However, L-MVU still requires considerable computation costs for out-of-sample data. An incremental version of L-MVU (denoted as IL-MVU) is proposed in this paper. The low-dimensional representation of the training data is generated by L-MVU. For each out-of-sample data, its nearest neighbors will be found in the high-dimensional training samples and the corresponding reconstruction weight matrix be calculated to generate its low-dimensional representation as well. IL-MVU is further combined with the dual-tree complex wavelet transform (DTCWT), which develops a hybrid feature extraction method (named as IL-MD). IL-MVU is applied to extract the nonlinear features of the specific subband signals, which are reconstructed by DTCWT and have the obvious event-related synchronization/event-related desynchronization phenomenon. The average energy features of α and β waves are calculated simultaneously. The two types of features are fused and are evaluated by a linear discriminant analysis classifier. Based on the two public datasets with 12 subjects, extensive experiments were conducted. The average recognition accuracies of 10-fold cross-validation are 92.50% on Dataset 3b and 88.13% on Dataset 2b, and they gain at least 1.43% and 3.45% improvement, respectively, compared to existing methods. The experimental results show that IL-MD can extract more accurate features with relatively lower consumption cost, and it also has better feature visualization and self-adaptive characteristics to subjects. The t-test results and Kappa values suggest the proposed feature extraction method reaches statistical significance and has high consistency in classification.


Sign in / Sign up

Export Citation Format

Share Document