Sliding Mode Control of a Welding Mobile Manipulator

2011 ◽  
Vol 347-353 ◽  
pp. 3211-3214
Author(s):  
Hong Mei

A new sliding mode variable structure controller is proposed. First, aiming at improving the convergence speed, a new nonlinear sliding mode surface is proposed. Then, the initial error speed is designed to make the initial state of the system to be just on the sliding mode surface which is to impair the chattering and improve the robustness of the controller. Finally, a mobile manipulator with two arms is taken as an example to simulate the trajectory tracking with the proposed controller. It is found that system shows high convergence speed and strong robustness against disturbance. The chattering is also impaired greatly.

Author(s):  
Hong Jun Li ◽  
Wei Jiang ◽  
Dehua Zou ◽  
Yu Yan ◽  
An Zhang ◽  
...  

Purpose In the multi-splitting transmission lines extreme power environment of ultra-high voltage and strong electromagnetic interference, to improve the trajectory tracking and stability control performance of the robot manipulator when conduct electric power operation, and effectively reduce the influence of disturbance factors on the robot motion control, this paper aims to presents a robust trajectory tracking motion control method for power cable robot manipulators based on sliding mode variable structure control theory. Design/methodology/approach Through the layering of aerial-online-ground robot three-dimensional control architecture, the robot joint motion dynamic model has been built, and the motion control model of the N-degrees of freedom robot system has also been obtained. On this basis, the state space expression of joint motion control under disturbance and uncertainty has been also derived, and the manipulator sliding mode variable structure trajectory tracking control model has also been established. The influence of the perturbation control parameters on the robot motion control can be compensated by the back propagation neural network learning, the stability of the controller has been analyzed by using Lyapunov theory. Findings The robot has been tested on a analog line in the lab, the effectiveness of sliding mode variable structure control is verified by trajectory tracking simulation experiments of different typical signals with different methods. The field operation experiment further verifies the engineering practicability of the control method. At the same time, the control method has the remarkable characteristics of sound versatility, strong adaptability and easy expansion. Originality/value Three-dimensional control architecture of underground-online-aerial robots has been proposed for industrial field applications in the ubiquitous power internet of things environment (UPIOT). Starting from the robot joint motion, the dynamic equation of the robot joint motion and the state space expression of the robot control system have been established. Based on this, a robot closed-loop trajectory tracking control system has been designed. A robust trajectory tracking motion control method for robots based on sliding mode variable structure theory has been proposed, and a sliding mode control model for the robot has been constructed. The uncertain parameters in the control model have been compensated by the neural network in real-time, and the sliding mode robust control law of the robot manipulator has been solved and obtained. A suitable Lyapunov function has been selected to prove the stability of the system. This method enhances the expansibility of the robot control system and shortens the development cycle of the controller. The trajectory tracking simulation experiment of the robot manipulator proves that the sliding mode variable structure control can effectively restrain the influence of disturbance and uncertainty on the robot motion stability, and meet the design requirements of the control system with fast response, high tracking accuracy and sound stability. Finally, the engineering practicability and superiority of sliding mode variable structure control have been further verified by field operation experiments.


2013 ◽  
Vol 380-384 ◽  
pp. 278-281
Author(s):  
Ju Huo ◽  
Jia Shan Cui

Using of feedback linearization technique to solve the problem of traditional sliding mode control chattering. The fuzzy adaptive control and sliding mode variable structure was designed by combining a novel adaptive fuzzy sliding mode variable structure controller. Through fuzzy inference and the stability analysis based on Lyapunov function to obtain fuzzy control rules adaptive law and effective solution to the traditional sliding mode control of the need to determine the parameter perturbation and external interference supremum uncertainty. Simulation results show that this method has better stability and robustness.


2009 ◽  
Vol 626-627 ◽  
pp. 453-458
Author(s):  
Hong Mei ◽  
Yong Wang

A solution to the problem of the elimination of the chattering effect and the improving of the convergence speed for sliding mode control is presented in this paper.A new dynamical sliding mode controller is developed which takes the first derivative of the control signal instead of the actual control as control and results in smoothed control inputs to the given system.A new nonlinear sliding mode surface is devised which can improve the convergence speed in the sliding phase.Exponential reaching law is taken to determine the control law which can improve the convergence speed in the reaching phase.A mobile manipulator with two arms is taken as an example to track a given trajectory with the proposed controller. It is found that the new developed method has a high convergence speed and the chattering is also reduced greatly.


2014 ◽  
Vol 596 ◽  
pp. 584-589
Author(s):  
Xi Jie Yin ◽  
Jian Guo Xu

The sliding mode variable structure control method for brushless DC motors with uncertain external disturbances and unknown loads is studied. A neural sliding mode control scheme is proposed for reducing chattering of sliding mode control. A global sliding mode manifold is designed in this approach, which guarantees that the system states can be on the sliding mode manifold at initial time and the system robustness is increased. A radial basis function neural network (RBFNN) is applied to learn the maximum of unknown loads and external disturbances. Based on the neural networks, the switching control parameters of sliding mode control can be adaptively adjusted with uncertain external disturbances and unknown loads. Therefore, the chattering of the sliding mode controller is reduced. Simulation results proved that this control scheme is valid.


2014 ◽  
Vol 926-930 ◽  
pp. 1463-1467
Author(s):  
Li Ding ◽  
Shu Bo Qiu

This paper involves a linear double inverted pendulum system whose the state space model is established by Lagrange function. In order to solve the chattering problem of the conventional quasi-sliding mode variable structure control, this linear double inverted pendulum system applies the fuzzy control theory to adjust the parameterwhich is in the sliding mode variable structure control law. Then the fuzzy theory is utilized to design the sliding mode and deduce the fuzzy sliding mode reaching law. The significance of this method is that it diffuses the control signal, reduces or avoids the chattering phenomenon of sliding mode control. For the most, the simulation results show that the linear double inverted pendulum system based on fuzzy sliding mode variable structure control not only retains the strong robustness of sliding mode variable structure control, but also improves the dynamic quality of the system and weakens the buffeting of the system. Thus the method is proved to have certain research.


2011 ◽  
Vol 346 ◽  
pp. 650-656
Author(s):  
Guang Yan Xu ◽  
Xiao Yan Jia ◽  
Hong Shi ◽  
Jian Guo Cui

In this paper, we discussed the trajectory tracking control problem of the kinematic model of wheel mobile robot. Designed an asymptotic stability tracking controller, using visual servo method based on inverse system and sliding mode variable structure control, and proposed a method to measure motion state of a target mobile robot. Simulation results show this method is feasible.


2017 ◽  
Vol 31 (19-21) ◽  
pp. 1740013
Author(s):  
Yanhong Zhang

A new sliding mode variable structure control algorithm suitable for active magnetic bearing is proposed, which is widely used for nonlinear control system. The model and controller is designed, simulation and experimental parts are also made, according to the switching function and the sliding mode control law. The current of electromagnet is adjusted to realize stable levitation of the rotor. The experimental result shows that the sliding mode variable structure controller is an effective way for magnetic bearing control, and the active magnetic bearing system is a highly nonlinear and advanced control method that can reduce the setting time and the cost.


Sign in / Sign up

Export Citation Format

Share Document