brushless dc
Recently Published Documents


TOTAL DOCUMENTS

3353
(FIVE YEARS 620)

H-INDEX

63
(FIVE YEARS 6)

Author(s):  
Prof. Mayur Shelke

Abstract: This review paper presents the design and development of an E-kart. The moto behind making this Electric-kart is to lower the number of pollutants and hazardous gases such as carbon monoxide, hydrocarbons, nitrogen oxide, etc. These types of gases are produced in an immense amount from vehicles. Therefore, we decided to make a vehicle that works efficiently on an electric motor and controller. We have used BLDC (brushless dc motor) motor which is powered by direct current and voltage. Motor control the motor controls the energy flow to the motor processes like throttle, brake, and control switches are connected to controller commands from these inputs i.e. Throttle, brake, etc., and control very precisely torque, speed, direction on and horsepower of the vehicle. The battery we used is a rechargeable lithium-ion battery. The main focus during the frame design was the stability of the E-kart and the safety of the driver. We also surveyed the market on chassis material, motor, brake, controller, and transmission system for cost and availability. International standards were followed during the whole project.


Energies ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 621
Author(s):  
Fugang Zhai ◽  
Liu Yang ◽  
Wenqi Fu ◽  
Haisheng Tong ◽  
Tianyu Zhao

This paper investigates the electromagnetic torque by considering back electromagnetic force (back-EMF) trapezoidal degrees of ironless brushless DC (BLDC) motors through the two-dimensional finite element method (2-D FEM). First, the change percentages of the electromagnetic torque with back-EMF trapezoidal degrees, relative to those of PMs without segments, are investigated on the premise of the same back-EMF amplitude. It is found that both PM symmetrically and asymmetrically segmented types influence back-EMF trapezoidal degrees. Second, the corresponding electromagnetic torque, relative to that of PMs without segments, is studied in detail. The results show that the electromagnetic torque can be improved or deteriorated depending on whether the back-EMF trapezoidal degree is lower or higher than that of PMs without segments. Additionally, the electromagnetic torque can easily be improved by increasing the number of PMs’ symmetrical segments. In addition, the electromagnetic torque in PMs with asymmetrical segments is always higher than that of PMs without segments. Finally, two ironless PM BLDC motors with PMs symmetrically segmented into three segments and without segments are manufactured and tested. The experimental results show good agreement with those of the 2-D FEM method. This approach provides significant guidelines to electromagnetic torque improvement without much increase in manufacturing costs and process complexity.


Actuators ◽  
2022 ◽  
Vol 11 (1) ◽  
pp. 11
Author(s):  
Sayako Sakama ◽  
Yutaka Tanaka ◽  
Akiya Kamimura

Until the 1970s, hydraulic actuators were widely used in many mechanical systems; however, recently, electric motors have become mainstream by virtue of their improved performance, and hydraulic motors have largely been replaced by electric motors in many applications. Although this trend is expected to continue into the future, it is important to comprehensively evaluate which motor is most suitable when designing mechanical systems. This paper presents the results of a survey of the performance of electric and hydraulic servo motors and aims to provide quantitative data that can be used as a reference for selecting appropriate motors. We surveyed AC, AC direct, brushless DC, and brushed DC electric motors and swash plate-type axial piston, bent axis-type axial piston, crank-type radial piston, and multistroke-type radial piston hydraulic motors. Performance data were collected from catalogs and nonpublic data. We compared and evaluated the characteristics of these diverse servo motors using indexes such as torque, rotating speed, output power, power density, and power rate.


2021 ◽  
Vol 14 (4) ◽  
pp. 383-393
Author(s):  
Zhengrong Wang ◽  
Rennian Li ◽  
Gaoping Xu ◽  
Wei Han ◽  
Mingkuo Bian ◽  
...  

Author(s):  
Song Kewei ◽  
Ze Zhang ◽  
Hu Wang ◽  
Fang Hui

In this study, we propose a novel robust online self-adaptive Proportional-Integral-Derivative (PID) control design for Brushless DC Motor (BLDCM) speed system under different operating conditions. The online adaptive tuning for PID parameters is realized accurately by optimizing the control rules of variable universe fuzzy inference with a modified genetic algorithm (GA). Based on the variable fuzzy inference theory, the method of solving contraction–expansion factor in real-time through fuzzy inference is proposed. Furthermore, the process to optimize two inference rules by GA is improved to get optimal control rules for adjusting PID parameters. Finally, multiple sets of simulations and experiments are conducted to validate the proposed controller in different conditions by building Simulink models and setting up experiment platforms. The results of this study not only demonstrate the effectiveness of the proposed controller but also provide technical suggestions for the speed control of BLDCM.


2021 ◽  
Vol 5 (4) ◽  
pp. 198-207
Author(s):  
E. B. Korotkov ◽  
O. V. Shirobokov ◽  
S. A. Matveev ◽  
Z. A. Yudina

The paper reports a brief description of spacecraft operating conditions, the main reasons of heating and thermal gradient appearance and need to reassign the thermal energy. Active thermal control systems and their advantages are considered, spacecraft for which the use of this type of thermal control systems is a priority. The electric pumping unit is pointed as a key unit of active thermal control systems. The electric pump unit is considered from the as the electromechanical system, its key elements are pointed. A description of the preferred pump types is reported and the types of active thermal control systems are briefly discussed. The foreign and domestic operating experience of spacecraft electric pumping units, the features of their designs are considered, the most common types of key elements are determined. Based on the results of the review, it is concluded that the most relevant layout of the electric pump unit is a centrifugal electrical pump with a brushless DC motor and hydrodynamic bearings. It is also indicated that the electric pump unit is a product with a long lifetime, which complicates the task of monitoring the technical condition in order to prevent failure.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
K. Karthick ◽  
S. Ravivarman ◽  
Ravi Samikannu ◽  
K. Vinoth ◽  
Bashyam Sasikumar

The cogging torque is the most significant issue in permanent magnet applications, since it has a negative impact on machine performance. In this article, the impact of magnetic materials on cogging torque is analyzed on brushless DC motors (BLDC). The effect of neodymium magnets (NdFeB), compression molded magnet, and samarium cobalt (SmCo) magnet on the cogging torque is analyzed to the BLDC motor designed for hybrid electric vehicle traction that has the peak power rating of 50 kW motor with 48 stator slots and 8 rotor poles. With the presence of these three magnetic materials, the cogging torque is estimated independently using multiposition simulation. The multiposition is simulated using a transient application that runs at constant speed. The results of cogging torque, rotational speed, angular position of BLDC motor, and magnetic flux density distribution have been presented. Also, the maximal, mean, minimal, rectified mean, and rms values of cogging torque were provided.


2021 ◽  
Author(s):  
Nabiya Ellahi

A method to control speed and rotor position with improved performance has been described in this research. Various techniques are taken into consideration with their detailed description. During this process new methods are also introduced with their pros and cons. The research includes a detailed study of progressive back-Emf sensing strategies. The relevant methods, which can support estimation, are the back Emf zero-crossing method, integration of voltage, and position estimation by flux and inductance. In this thesis, Extended Kalman filter is utilized for position and speed estimation. Firstly, DC voltage will be applied as an input. Extended Kalman Filter is used to perform state estimation while PID controller is employed to regulate the system state following the reference signal. The proposed solution leads to control of the ripple generated in speed and torque of Brushless DC Motor and improved performance.


Sign in / Sign up

Export Citation Format

Share Document