Influence of Post Weld Heat Treatment on Microstructure and Mechanical Properties of Friction Stir-Welded 2014Al-T6 Alloy

2011 ◽  
Vol 409 ◽  
pp. 299-304 ◽  
Author(s):  
Z. Zhang ◽  
B.L. Xiao ◽  
Zong Yi Ma

5 mm thick 2014Al-T6 alloy plates were friction stir welded at the welding speeds of 100-400 mm/min and the rotation rates of 400-800 rpm. The influence of post weld artificial aging and T6 treatments on the microstructure and mechanical properties of FSW 2014Al-T6 joints were investigated. It was found that artificial aging did not alter the grain structure but T6 heat treatment caused the abnormal grain growth at the nugget zone. The tensile strength of the joints could not be enhanced by the artificial aging treatment but were improved by the T6 treatment. The effectiveness of T6 treatment is related with the distribution of “S” line.

2016 ◽  
Vol 25 (3-4) ◽  
pp. 89-98 ◽  
Author(s):  
C. Rajendran ◽  
K. Srinivasan ◽  
V. Balasubramanian ◽  
H. Balaji ◽  
P. Selvaraj

AbstractFriction stir welded (FSWed) joints of aluminum alloys exhibited a hardness drop in both the advancing side (AS) and retreating side (RS) of the thermo-mechanically affected zone (TMAZ) due to the thermal cycle involved in the FSW process. In this investigation, an attempt has been made to overcome this problem by post weld heat treatment (PWHT) methods. FSW butt (FSWB) joints of Al-Cu (AA2014-T6) alloy were PWHT by two methods such as simple artificial aging (AA) and solution treatment followed by artificial aging (STA). Of these two treatments, STA was found to be more beneficial than the simple aging treatment to improve the tensile properties of the FSW joints of AA2014 aluminum alloy.


Sign in / Sign up

Export Citation Format

Share Document