The Evaluation of Fabric Prickle Based on BP Neural Network

2012 ◽  
Vol 441 ◽  
pp. 645-650
Author(s):  
Tian Tian Li ◽  
Jian Zhong Shao ◽  
Jin Li Zhou ◽  
Tian Zuo Zhang

A three-layer BP neural network model was established by relating subjective evaluation of fabric prickle level and 16 objective parameters from KES-FB system. The elastic gradient decrease method was adopted for network training to achieve the preset precision of the model which was later applied to fabric prickle level evaluation. Results from this method gave a considerably accuracy compared with actual subjective results which implied a compatibility between BP neural network and traditional subjective evaluation.

2013 ◽  
Vol 415 ◽  
pp. 569-573 ◽  
Author(s):  
Fang Li ◽  
Yan Yan Zuo

According to the complexity and non-linear characteristics of car interior sound quality evaluation, the technology of BP neural network is used in sound quality evaluation. The interior noise samples from actual cars were obtained by road experiment. The subjective evaluation test of sound quality annoyance was carried out. Meanwhile, several objective psycho-acoustical parameters of these samples were calculated. The sound quality prediction model of vehicle interior noise was established based on BP neural network. Annoyance of samples was obtained by means of the prediction model and the results were compared with that obtained by multiple liner regression prediction model. The results indicate that the prediction results from BP neural network model were close to the measured values. The BP neural network model was more effective than multiple liner regression model, and it can be used effectively to the evaluation of modern car noise.


2016 ◽  
Vol 6 (2) ◽  
pp. 942-952
Author(s):  
Xicun ZHU ◽  
Zhuoyuan WANG ◽  
Lulu GAO ◽  
Gengxing ZHAO ◽  
Ling WANG

The objective of the paper is to explore the best phenophase for estimating the nitrogen contents of apple leaves, to establish the best estimation model of the hyperspectral data at different phenophases. It is to improve the apple trees precise fertilization and production management. The experiments were done in 20 orchards in the field, measured hyperspectral data and nitrogen contents of apple leaves at three phenophases in two years, which were shoot growth phenophase, spring shoots pause growth phenophase, autumn shoots pause growth phenophase. The study analyzed the nitrogen contents of apple leaves with its original spectral and first derivative, screened sensitive wavelengths of each phenophase. The hyperspectral parameters were built with the sensitive wavelengths. Multiple stepwise regressions, partial least squares and BP neural network model were adopted in the study. The results showed that 551 nm, 716 nm, 530 nm, 703 nm; 543 nm, 705 nm, 699 nm, 756 nm and 545 nm, 702 nm, 695 nm, 746 nm were sensitive wavelengths of three phenophases. R551+R716, R551*R716, FDR530+FDR703, FDR530*FDR703; R543+R705, R543*R705, FDR699+FDR756, FDR699*FDR756and R545+R702, R545*R702, FDR695+FDR746, FDR695*FDR746 were the best hyperspectral parameters of each phenophase. Of all the estimation models, the estimated effect of shoot growth phenophase was better than other two phenophases, so shoot growth phenophase was the best phenophase to estimate the nitrogen contents of apple leaves based on hyperspectral models. In the three models, the 4-3-1 BP neural network model of shoot growth phenophase was the best estimation model. The R2 of estimated value and measured value was 0.6307, RE% was 23.37, RMSE was 0.6274.


Author(s):  
Lijuan Huang ◽  
Guojie Xie ◽  
Wende Zhao ◽  
Yan Gu ◽  
Yi Huang

AbstractWith the rapid development of e-commerce, the backlog of distribution orders, insufficient logistics capacity and other issues are becoming more and more serious. It is very significant for e-commerce platforms and logistics enterprises to clarify the demand of logistics. To meet this need, a forecasting indicator system of Guangdong logistics demand was constructed from the perspective of e-commerce. The GM (1, 1) model and Back Propagation (BP) neural network model were used to simulate and forecast the logistics demand of Guangdong province from 2000 to 2019. The results show that the Guangdong logistics demand forecasting indicator system has good applicability. Compared with the GM (1, 1) model, the BP neural network model has smaller prediction error and more stable prediction results. Based on the results of the study, it is the recommendation of the authors that e-commerce platforms and logistics enterprises should pay attention to the prediction of regional logistics demand, choose scientific forecasting methods, and encourage the implementation of new distribution modes.


2010 ◽  
Vol 34-35 ◽  
pp. 301-305
Author(s):  
Zhao Qian Zhu ◽  
Jue Yang ◽  
Xiao Ming Zhang ◽  
Xiao Lei Li

This paper studied misfire diagnosis of diesel engine based on short-time vibration characters. Misfire of diesel engine was simulated by the vibration monitoring test. Cylinder vibration signal and top center signal were collected under different states. The short-time vibration signal of each cylinder was intercepted according to the diesel combustion sequence, effective value was calculated, and BP Neural Network model built with this character was used to diagnose diesel misfire. The result shows that this method can locate the misfire cylinder effectively, and it is meaningful for guiding the detection and repair of vehicles.


2021 ◽  
Vol 336 ◽  
pp. 06011
Author(s):  
Haonan Dong ◽  
Ruili Jiao ◽  
Minsong Huang

In order to solve the problem that the shape of cloud particle images measured by airborne cloud imaging probe (CIP) cannot be automatically recognized, this paper proposes an automatic recognition method of cloud and precipitation particle shape based on BP neural network. This method mainly uses a set of geometric parameters which can better describe the shape characteristics of cloud precipitation particles. Based on the cloud precipitation particle images measured by CIP in the precipitation stratiform clouds in northern China, a particle shape data training set and a testing set were constructed to train and verify the effect of the selected BP neural network model. The selected BP neural network model can classify the cloud particle image into tiny, column, needle, dendrite, aggregate, graupel, sphere, hexagonal and irregular. Utilizing the field campaign data measured by CIP, the habit identified results by the improved Holroyd method and by the selected BP neural network model were compared, which shows that the accuracy of BP neural network method is better than that of improved Holroyd method.


2017 ◽  
Vol 19 (2) ◽  
pp. 878-893 ◽  
Author(s):  
Xianming Chen ◽  
Tieliu Wang ◽  
Mingming Ding ◽  
Jing Wang ◽  
Jianqing Chen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document