Robust Tracking Control for a Class of Nonlinear Systems

2012 ◽  
Vol 479-481 ◽  
pp. 2161-2164
Author(s):  
Yang Yu ◽  
Wei Wang

This paper deals with the problem of fizzy robust tracking control for a class of nonlinear systems. The nonlinear system is approximated by T-S model, considering the modeling error. The tracking error of the controlled system following the reference signal is studied, and the tracking error’s exponential stability. The coherence of tracking control and stabilization control of the fuzzy systems is proved by using Lyapunov function theory combining with linear matrix inequalities (LMIs).Simulation results demonstrate the effectiveness of the proposed approach and conditions.

1998 ◽  
Vol 31 (18) ◽  
pp. 345-350
Author(s):  
Jijoon Byun ◽  
Nam H. Jo ◽  
Hyungbo Shim ◽  
Jin H. Seo

2018 ◽  
Vol 2018 ◽  
pp. 1-15 ◽  
Author(s):  
Xiao Yu ◽  
Fucheng Liao ◽  
Jiamei Deng

This paper considers the design of the robust preview controller for a class of uncertain discrete-time Lipschitz nonlinear systems. According to the preview control theory, an augmented error system including the tracking error and the known future information on the reference signal is constructed. To avoid static error, a discrete integrator is introduced. Using the linear matrix inequality (LMI) approach, a state feedback controller is developed to guarantee that the closed-loop system of the augmented error system is asymptotically stable with H∞ performance. Based on this, the robust preview tracking controller of the original system is obtained. Finally, two numerical examples are included to show the effectiveness of the proposed controller.


Robotica ◽  
1991 ◽  
Vol 9 (1) ◽  
pp. 53-62 ◽  
Author(s):  
Zoran R. Novaković ◽  
Leon Z˘lajpah

SUMMARYBased on the Lyapunov theory, a new principle was developed for synthesizing robot tracking control in the presence of model uncertainties. First, a general Lyapunov-like robust tracking concept is presented. It is then used as a basis for the control algorithm derived via a quadratic Lyapunov function constructed using a sliding mode function (based on the output error). Control synthesis is made in task-space, without any need for solving the inverse kinematics problem, i.e. one does not need to inver the Jacobian matrix. It is also shown that the tracking error becomes close to zero in a settling time which is less than a prescribed finite time. Simulation results are incorporated.


Sign in / Sign up

Export Citation Format

Share Document