Research on Fluid-Structure Interaction Dynamic Characteristics of Steam Generator Heat Exchanger Tubes

2012 ◽  
Vol 482-484 ◽  
pp. 183-187
Author(s):  
Li Na Zhang ◽  
Hui Zhao ◽  
Min Shan Liu

For heat exchanger tube of steam generator, the relation between heat exchanger tube and fluid is typical fluid-structure interaction problem. Flow induced vibration has been found so far to be responsible for fatigue damage and failure of steam generator tubes, which will result in large economic loss and radioactive pollution. So the steam generator tubes are the weakest link in the primary coolant loop. Based on the synthesis of all sorts of factors influencing the dynamic characteristics of steam generator heat transfer tubes, establishing the heat transfer tube model, research on the weakening effect of fluid hole on fluid, the natural frequencies of the heat transfer tubes are analyzed under different fluid holes and fluid hole distance by numerical simulation.

2011 ◽  
Vol 382 ◽  
pp. 52-55
Author(s):  
Li Na Zhang ◽  
Su Zhen Wang

The fluid-structure interaction (FSI) dynamic characteristics of steam generator tubes counting for much with safety of an operating nuclear power plants are investigated by analytical methods based on dynamics mechanics and FSI theories. By using the parametric design language APDL of finite element program ANSYS, intelligently dividing model, setting up material and geometric parameters, the models of tubes with internal and external fluid, the different factors influencing on fluid-structure interaction dynamic characteristics of steam generator tubes are investigated by numerical method.


Author(s):  
Zheng Li ◽  
Yangyang Chen ◽  
Xianchen Xu ◽  
Kuojiang Li ◽  
Zhaoqing Ke ◽  
...  

Plate fin heat exchanger is widely used for air side cooling. To enhance its thermal performance, a novel self-agitator for air-side heat transfer enhancement was developed and validated both numerically and experimentally. Self-Agitator made of 3D printing material connected to well-designed metal beam was placed between the plate fins. It could lose stability and start to oscillate in the channel due to fluid structure interaction. The oscillation enhanced the mixing so that self-agitator can improve the heat transfer in plate fin. Wind tunnel experiment was carried out and self-agitator can save pumping power up to 40% with the same rejected heat. Numerical model was also developed and verified for this fluid-structure interaction process.


2008 ◽  
Vol 238 (8) ◽  
pp. 2048-2054 ◽  
Author(s):  
Karl Kuehlert ◽  
Stephen Webb ◽  
David Schowalter ◽  
William Holmes ◽  
Amarvir Chilka ◽  
...  

2016 ◽  
Vol 33 (8) ◽  
pp. 2504-2529 ◽  
Author(s):  
Babak Lotfi ◽  
Bengt Sunden ◽  
Qiu-Wang Wang

Purpose The purpose of this paper is to investigate the numerical fluid-structure interaction (FSI) framework for the simulations of mechanical behavior of new vortex generators (VGs) in smooth wavy fin-and-elliptical tube (SWFET) heat exchanger using the ANSYS MFX Multi-field® solver. Design/methodology/approach A three-dimensional FSI approach is proposed in this paper to provide better understanding of the performance of the VG structures in SWFET heat exchangers associated with the alloy material properties and geometric factors. The Reynolds-averaged Navier-Stokes equations with shear stress transport turbulence model are applied for modeling of the turbulent flow in SWFET heat exchanger and the linear elastic Cauchy-Navier model is solved for the structural von Mises stress and elastic strain analysis in the VGs region. Findings Parametric studies conducted in the course of this research successfully identified illustrate that the maximum magnitude of von Mises stress and elastic strain occurs at the root of the VGs and depends on geometrical parameters and material types. These results reveal that the titanium alloy VGs shows a slightly higher strength and lower elastic strain compared to the aluminum alloy VGs. Originality/value This paper is one of the first in the literature that provides original information mechanical behavior of a SWFET heat exchanger model with new VGs in the field of FSI coupling technique.


Author(s):  
Marie Pomarede ◽  
Erwan Liberge ◽  
Aziz Hamdouni ◽  
Elisabeth Longatte ◽  
Jean-Franc¸ois Sigrist

Tube bundles in steam boilers of nuclear power plants and nuclear on-board stokehold are known to be exposed to high levels of vibrations. This coupled fluid-structure problem is very complex to numerically set up, because of its three-dimensional characteristics and because of the large number of degrees of freedom involved. A complete numerical resolution of such a problem is currently not viable, all the more so as a precise understanding of this system behaviour needs a large amount of data, obtained by very expensive calculations. We propose here to apply the now classical reduced order method called Proper Orthogonal Decomposition to a case of 2D flow around a tube bundle. Such a case is simpler than a complete steam generator tube bundle; however, it allows observing the POD projection behaviour in order to project its application on a more realistic case. The choice of POD leads to reduced calculation times and could eventually allow parametrical investigations thanks to a low data quantity. But, it implies several challenges inherent to the fluid-structure characteristic of the problem. Previous works on the dynamic analysis of steam generator tube bundles already provided interesting results in the case of quiescent fluid [J.F. Sigrist, D. Broc; Dynamic Analysis of a Steam Generator Tube Bundle with Fluid-Structure Interaction; Pressure Vessel and Piping, July 27–31, 2008, Chicago]. Within the framework of the present study, the implementation of POD in academic cases (one-dimensional equations, 2D-single tube configuration) is presented. Then, firsts POD modes for a 2D tube bundle configuration is considered; the corresponding reduced model obtained thanks to a Galerkin projection on POD modes is finally presented. The fixed case is first studied; future work will concern the fluid-structure interaction problem. Present study recalls the efficiency of the reduced model to reproduce similar problems from a unique data set for various configurations as well as the efficiency of the reduction for simple cases. Results on the velocity flow-field obtained thanks to the reduced-order model computation are encouraging for future works of fluid-structure interaction and 3D cases.


Sign in / Sign up

Export Citation Format

Share Document