Effect of DC Casting Processes on Microstructure of AlCu4.5Mn0.8 Alloy

2013 ◽  
Vol 652-654 ◽  
pp. 2409-2412
Author(s):  
Li Zhou ◽  
Gen Xiang Luo

The semi-solid billets of AlCu4.5Mn0.8 alloy were cast respectively by low frequency electromagnetic, low-superheated, and conventional direct chill casting. The effect of casting processes on microstructures was investigated. The results show that due to the effect of the low frequency electromagnetic field, the coarse dentritic microstructure is gradually broken up and turned into the homogeneous, fine rosette-shaped non-dentritic microstructures with the increase of electromagnetic frequency from 10 Hz to 30 Hz. When electromagnetic frequency is 30 Hz, the homogeneous, fine non-dentritic microstructure what is suitable for semi-solid reheating and thixo-forming could be obtained successfully.

2011 ◽  
Vol 189-193 ◽  
pp. 3795-3798
Author(s):  
Xiang Jie Wang ◽  
Jian Zhong Cui ◽  
Hai Tao Zhang ◽  
Hui Xue Jiang ◽  
Gao Song Wang

Surface segregation layer are frequently encountered during aluminium alloy direct chill casting process, and the removal of the surface segregation layer before further processing of the ingot decreases the ingot yield. In this work, the low frequency electromagnetic field was applied to study the effects of low frequency electromagnetic field on segregation layer during the direct chill casting process. The results show that under the effect of the low frequency electromagnetic field, the surface quality of ingot is improved, the structure of the ingot is refined, and the thickness of segregation layer is decreased.


2018 ◽  
Vol 54 ◽  
pp. 170-188 ◽  
Author(s):  
Vanja Hatić ◽  
Boštjan Mavrič ◽  
Nejc Košnik ◽  
Božidar Šarler

2007 ◽  
Vol 546-549 ◽  
pp. 953-956
Author(s):  
Ke Qin ◽  
Jian Zhong Cui

The influences of low frequency electromagnetic field on microstructures and macro-segregation in direct chill casting process were investigated in the experiments,Al-19.2%Si alloys were semi-continuously cast into ingots with 100 mm in diameter. Microstructures and macrostructures of samples taken from different part of the cast with different electromagnetic field conditions were characterized by optical microscopy. The results showed that low frequency electromagnetic field refines the microstructures and reduces macro-segregation. Unlike casting without electromagnetic field, the primary Si grains were homogeneous with fine dimensions and the morphology of the primary silicon exhibited small blocky structures or near-spherical structures. Further more, decreasing frequency is beneficial to the improvement. In the range conditions in the experiments, the optimum frequency is found to be 15Hz. During casting, the temperature of the liquid metal in the sump was monitored. The results shown, under LFEC the width of the liquid-solid region became narrowed and the temperature field in the sump also became homogeneous.


2011 ◽  
Vol 686 ◽  
pp. 26-29
Author(s):  
Zhi Qiang Zhang ◽  
Qi Chi Le ◽  
Jian Zhong Cui

Effects of low frequency electromagnetic field on surface quality, microstructure and hot-tearing tendency of direct chill casting of Φ500mm ZK60 magnesium alloy billets were investigated. The results show that with the application of the low frequency electromagnetic field, the surface quality of Φ500mm ZK60 magnesium alloy billets has been markedly improved, and the depth of cold fold is decreased. In the conventional direct chill casting, the microstructures of the billet, especially at the center, are coarse. The distribution of the grain size is non-uniform throughout the billet. From the edge to the center, the microstructure gradually changes from fine to coarse in all billets. However, under the low frequency electromagnetic casting, the microstructures of the billet is significantly refined, the distribution of the grains size is relatively uniform from the billets edge to the billets center. And it also shows that the hot-tearing tendency of direct chill casting Φ500mm ZK60 magnesium alloy billets under low frequency electromagnetic field is significantly reduced.


2011 ◽  
Vol 295-297 ◽  
pp. 1705-1708
Author(s):  
Dan Dan Chen ◽  
Hai Tao Zhang ◽  
Xiang Jie Wang ◽  
Jian Zhong Cui

The effects of the low frequency electromagnetic field on the macrosegregation of the 7075 aluminum ingots were investigated. The 7075 aluminum ingots with the diameter of 200 mm were prepared by the conventional direct chill casting and the low frequency electromagnetic field casting (LFEC) processes, respectively. The temperature during casting at steady state was measured, and the mushy region was observed from the temperature contour. The concentrations of the alloying elements were measured by the spectrograph. It was found that the transition region was broadened, but the mushy zone became narrower with presence of the low frequency electromagnetic field. The centerline macrosegregation of the ingots was alleviated by the low frequency electromagnetic casting process.


Sign in / Sign up

Export Citation Format

Share Document