solid region
Recently Published Documents


TOTAL DOCUMENTS

72
(FIVE YEARS 11)

H-INDEX

12
(FIVE YEARS 1)

2021 ◽  
Vol 2116 (1) ◽  
pp. 012040
Author(s):  
Jasper Nonneman ◽  
Kenny Couvreur ◽  
Andrey Vancoillie ◽  
Michel De Paepe

Abstract An experimental setup is built to determine the thermal conductivity of a mixture of KNO3 and NaNO3 with a ratio of 54-46m% which is used in high temperature thermal storage systems. The measurement principle is based on the transient parallel hot-wire method which is described in the standards NBN B 62-202 and ISO 8892-2. The setup is designed to measure the thermal conductivity around the melting temperature (<300°C). Measurements within the liquid region show faulty results caused by natural convection within the sample. The measured thermal conductivity within the solid region is 0.5466-0.5529W/mK close to the melting point and 0.7174W/mK at room temperature, which shows a decreasing thermal conductivity with increasing temperature in the solid region.


Author(s):  
Yahya Ali Rothan

In this investigation, numerical modeling for the behavior of nanomaterial inside a porous zone with imposing Lorentz force has been illustrated. The working fluid is a mixture of H2O and CuO and due to concentration of 0.04, it is reasonable to use the homogeneous model. Two-temperature model for porous zone was employed in which new scalar for calculating temperature of solid region was defined. CVFEM has been applied to model this complex physics. Radiation terms were considered and their influence on Nu has also been considered. Verification with benchmark proves greater accuracy. Dispersing nanopowders helps the fluid to increase velocity and reduce the temperature of inner wall. Rise of Ra results in three strong eddies inside the zone which creates two thermal plumes and it reduces the temperature of square surface about 68%. With rise of Nhs, the power of counter-clockwise vortex reduces about 61.6% and inner wall becomes warmer about 33.3%. Raising the Ha makes thermal plume to vanish and cooling rate decreases about 46.6%. Augment of Nhs makes Nu to reduce about 5.08% while augment of Ra makes it to augment about 35.64%. Also, augmenting Ha makes Nu to decline about 56.45%.


2021 ◽  
Author(s):  
Yaroslav Ignatenko ◽  
Andrey Gavrilov ◽  
Oleg Bocharov

Abstract The paper presents the results of an investigation into drilling mud flow with cuttings in a vertical well. The drilling mud rheology was described with the Herschel-Bulkley model. The axial Reynolds number was around 1000, the flow regime changing together with drill pipe RPM. The investigation covered the flow’s structures, integral parameters and cuttings transport in relation to drill pipe RPM and rate of penetration (ROP). In the laminar flow, most of the particles were localized in the quasi-solid region to move together with the last; the integral parameters had little dependence on drill pipe RPM increase. Increasing drill pipe RPM resulted in formation of the Görtler vortices near the channel’s external and internal walls, whose interaction led to the formation of smaller eddies converting the flow into a turbulent one. Due to the turbulence dispersion, the region taken by the particles widened. Particles suppress the vortex intensity near the channel’s external wall. Under the conditions described, increasing drill pipe RPM and ROP resulted in higher pressure drops and lower transport efficiency.


2021 ◽  
Author(s):  
Yougang Ruan ◽  
Zhenping Feng

Abstract In gas turbine, the interaction between hot gas mainstream and blade solid region becomes more and more obvious as the turbine inlet temperature increases, thus heat conduction within the blade solid regions should be taken into consideration in optimization design process. In this paper, an adjoint-based optimization method for heat conduction problems in the solid region was built based on ANSYS Fluent and OpenFOAM Solver. The continuous adjoint equation and the corresponding boundary conditions for three typical conduction boundary conditions were derived in detail. To validate the correctness of this method, inverse design problems within the hollow cylinder and hollow blade were calculated, respectively. Inner shape inverse design of the hollow cylinder and the blade thickness inverse design were performed, and the target values were found successfully. Adjoint gradients were compared with finite-difference method or theoretical results. Then a Conjugate Heat Transfer (CHT) calculation was performed using ANSYS Fluent software, and the numerical methods were validated against the experimental results. An optimization of the struts place and thickness within hollow blade for average temperature was performed based on the CHT calculation results. Average temperature within the solid region of the optimized blade decreased 11.1K as compared to the original case.


Entropy ◽  
2021 ◽  
Vol 23 (6) ◽  
pp. 725
Author(s):  
Yongxiang Li ◽  
Florian Ries ◽  
Kaushal Nishad ◽  
Amsini Sadiki

In this paper, advanced wall-modeled large eddy simulation (LES) techniques are used to predict conjugate heat transfer processes in turbulent channel flow. Thereby, the thermal energy transfer process involves an interaction of conduction within a solid body and convection from the solid surface by fluid motion. The approaches comprise a two-layer RANS–LES approach (zonal LES), a hybrid RANS–LES representative, the so-called improved delayed detached eddy simulation method (IDDES) and a non-equilibrium wall function model (WFLES), respectively. The results obtained are evaluated in comparison with direct numerical simulation (DNS) data and wall-resolved LES including thermal cases of large Reynolds numbers where DNS data are not available in the literature. It turns out that zonal LES, IDDES and WFLES are able to predict heat and fluid flow statistics along with wall shear stresses and Nusselt numbers accurately and that are physically consistent. Furthermore, it is found that IDDES, WFLES and zonal LES exhibit significantly lower computational costs than wall-resolved LES. Since IDDES and especially zonal LES require considerable extra work to generate numerical grids, this study indicates in particular that WFLES offers a promising near-wall modeling strategy for LES of conjugated heat transfer problems. Finally, an entropy generation analysis using the various models showed that the viscous entropy production is zero inside the solid region, peaks at the solid–fluid interface and decreases rapidly with increasing wall distance within the fluid region. Except inside the solid region, where steep temperature gradients lead to high (thermal) entropy generation rates, a similar behavior is monitored for the entropy generation by heat transfer process.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Xiaoguang Li ◽  
Nianping Jiang ◽  
Chunlai Zhang ◽  
Xiangguo Luo ◽  
Peng Zhong ◽  
...  

Abstract Background The purpose of this study was to determine the potential value of magnetic resonance imaging (MRI) texture analysis (TA) in differentiating between benign and borderline/malignant phyllodes tumors of the breast. Methods The preoperative MRI data of 25 patients with benign phyllodes tumors (BPTs) and 19 patients with borderline/malignant phyllodes tumors (BMPTs) were retrospectively analyzed. A gray-level histogram and gray-level cooccurrence matrix (GLCM) were used for TA with fat-suppressed T2-weighted imaging (FS-T2WI), diffusion-weighted imaging (DWI), apparent diffusion coefficient (ADC) images, and 2- and 7-min postcontrast T1W images on dynamic contrast-enhanced MRI (DCE-T1WI2min and DCE-T1WI7min) between BPTs and BMPTs. Independent sample t-test and Mann-Whitney U test were performed for intergroup comparison. A regression model was established by using binary logistic regression analysis, and receiver operating characteristic (ROC) curve analysis was carried out to evaluate diagnostic efficiency. Results For ADC images, the texture parameters angular second moment (ASM), correlation, contrast, entropy and the minimum gray values of ADC images (ADCMinimum) showed significant differences between the BPT group and BMPT group (all p<0.05). The parameter entropy of FS-T2WI and the maximum gray values and kurtosis of the tumor solid region of DCE-T1WI7min also showed significant differences between these two groups. Except for ADCMinimum, angular second moment of FS-T2WI (FS-T2WIASM), and the maximum gray values of DCE-T1WI7min (DCE-T1WI7min-Maximum) of the tumor solid region, the AUC values of other positive texture parameters mentioned above were greater than 0.75. Binary logistic regression analysis demonstrated that the contrast of ADC images (ADCContrast) and entropy of FS-T2WI (FS-T2WIEntropy) could be considered independent texture variables for the differential diagnosis of BPTs and BMPTs. Combined, the AUC of these parameters was 0.891 (95% CI: 0.793–0.988), with a sensitivity of 84.2% and a specificity of up to 89.0%. Conclusion Texture analysis could be helpful in improving the diagnostic efficacy of conventional MR images in differentiating BPTs and BMPTs.


2021 ◽  
Vol 336 ◽  
pp. 02030
Author(s):  
Santiago Moreno-Avendano ◽  
Daniel Mejia-Parra ◽  
Oscar Ruiz-Salguero

In the context of shape processing, the estimation of the medial axis is relevant for the simplification and re-parameterization of 3D bodies. The currently used methods are based on (1) General fields, (2) Geometric methods and (3) voxel-based thinning. They present shortcomings such as (1) overrepresentation and non-smoothness of the medial axis due to high frequency nodes and (2) biased-skeletons due to skewed thinning. To partially overcome these limitations, this article presents a non-deterministic algorithm for the estimation of the 1D skeleton of triangular B-Reps or voxel-based body representations. Our method articulates (1) a novel randomized thinning algorithm that avoids possible skewings in the final skeletonization, (2) spectral-based segmentation that eliminates short dead-end branches, and (3) a maximal excursion method for reduction of high frequencies. The test results show that the randomized order in the removal of the instantaneous skin of the solid region eliminates bias of the skeleton, thus respecting features of the initial solid. An Alpha Shape-based inversion of the skeleton encoding results in triangular boundary Representations of the original body, which present reasonable quality for fast non-minute scenes. Future work is needed to (a) tune the spectral filtering of high frequencies off the basic skeleton and (b) extend the algorithm to solid regions whose skeletons mix 1D and 2D entities.


Research ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-14
Author(s):  
Jing Wang ◽  
Yunfan Xue ◽  
Jun Liu ◽  
Mi Hu ◽  
He Zhang ◽  
...  

The drug-eluting stent (DES) has become one of the most successful and important medical devices for coronary heart disease, but yet suffers from insufficient endothelial cell (EC) growth and intima repair, eventually leading to treatment failure. Although biomacromolecules such as vascular endothelial growth factor (VEGF) would be promising to promote the intima regeneration, combining hydrophilic and vulnerable biomacromolecules with hydrophobic drugs as well as preserving the bioactivity after harsh treatments pose a huge challenge. Here, we report on a design of hierarchical capillary coating, which composes a base solid region and a top microporous region for incorporating rapamycin and VEGF, respectively. The top spongy region can guarantee the efficient, safe, and controllable loading of VEGF up to 1 μg/cm2 in 1 minute, providing a distinctive real-time loading capacity for saving the bioactivity. Based on this, we demonstrate that our rapamycin-VEGF hierarchical coating impressively promoted the competitive growth of endothelial cells over smooth muscle cells (ratio of EC/SMC~25) while relieving the adverse impact of rapamycin to ECs. We further conducted the real-time loading of VEGF on stents and demonstrate that the hierarchical combination of rapamycin and VEGF showed remarkable endothelium regeneration while maintaining a very low level of in-stent restenosis. This work paves an avenue for the combination of both hydrophobic and hydrophilic functional molecules, which should benefit the next generation of DES and may extend applications to diversified combination medical devices.


2019 ◽  
Vol 5 (1) ◽  
Author(s):  
Lorenzo Dall’Ava ◽  
Harry Hothi ◽  
Johann Henckel ◽  
Anna Di Laura ◽  
Paul Shearing ◽  
...  

Abstract Background The design freedom allowed by three-dimensional (3D) printing enables the production of acetabular off-the-shelf cups with complex porous structures. The only studies on these designs are limited to clinical outcomes. Our aim was to analyse and compare the designs of different 3D printed cups from multiple manufacturers (Delta TT, Trident II Tritanium and Mpact 3D Metal). Methods We analysed the outer surface of the cups using scanning electron microscopy (SEM) and assessed clinically relevant morphometric features of the lattice structures using micro-computed tomography (micro-CT). Dimensions related to the cup wall (solid, lattice and overall thickness) were also measured. Roundness and roughness of the internal cup surface were analysed with coordinate measuring machine (CMM) and optical profilometry. Results SEM showed partially molten titanium beads on all cups, significantly smaller on Trident II (27 μm vs ~ 70 μm, p < 0.0001). We found a spread of pore sizes, with median values of 0.521, 0.841 and 1.004 mm for Trident II, Delta TT and Mpact, respectively. Trident II was also significantly less porous (63%, p < 0.0001) than the others (Delta TT 72.3%, Mpact 76.4%), and showed the thinnest lattice region of the cup wall (1.038 mm, p < 0.0001), while Mpact exhibited the thicker solid region (4.880 mm, p < 0.0044). Similar roundness and roughness of the internal cup surfaces were found. Conclusion This was the first study to compare the designs of different 3D printed cups. A variability in the morphology of the outer surface of the cups and lattice structures was found. The existence of titanium beads on 3D printed parts is a known by-product of the manufacturing process; however, their prevalence on acetabular cups used in patients is an interesting finding, since these beads may potentially be released in the body.


Sign in / Sign up

Export Citation Format

Share Document