scholarly journals Biomechanics of Synthetic Elastin: Insights from Magnetic Resonance Microimaging

2013 ◽  
Vol 699 ◽  
pp. 457-463 ◽  
Author(s):  
Konstantin I. Momot ◽  
Sean K. Powell ◽  
Suzanne M. Mithieux ◽  
Anthony S. Weiss

We used Magnetic Resonance microimaging (MRI) to study the compressive behaviour of synthetic elastin. Compression-induced changes in the elastin sample were quantified using longitudinal and transverse spin relaxation rates (R1 and R2, respectively). Spatially-resolved maps of each spin relaxation rate were obtained, allowing the heterogeneous texture of the sample to be observed with and without compression. Compression resulted in an increase of both the mean R1 and the mean R2, but most of this increase was due to sub-locations that exhibited relatively low R1 and R2 in the uncompressed state. This behaviour can be described by differential compression, where local domains in the hydrogel with a relatively low biopolymer content compress more than those with a relatively high biopolymer content.

2015 ◽  
Vol 5 ◽  
pp. 1 ◽  
Author(s):  
Grigorios Gotzamanis ◽  
Roman Kocian ◽  
Pinar S. Özbay ◽  
Manuel Redle ◽  
Spyridon Kollias ◽  
...  

Objectives: This study aims to quantify the response of the transverse relaxation rate of the magnetic resonance (MR) signal of the cerebral tissue in healthy volunteers to the administration of air with step-wise increasing percentage of oxygen. Materials and Methods: The transverse relaxation rate (R2*) of the MR signal was quantified in seven volunteers under respiratory intake of normobaric gas mixtures containing 21, 50, 75, and 100% oxygen, respectively. End-tidal breath composition, arterial blood saturation (SaO2), and heart pulse rate were monitored during the challenge. R2* maps were computed from multi-echo, gradient-echo magnetic resonance imaging (MRI) data, acquired at 3.0T. The average values in the segmented white matter (WM) and gray matter (GM) were tested by the analysis of variance (ANOVA), with Bonferroni post-hoc correction. The GM R2*-reactivity to hyperoxia was modeled using the Hill's equation. Results: Graded hyperoxia resulted in a progressive and significant (P < 0.05) decrease of the R2* in GM. Under normoxia the GM-R2* was 17.2 ± 1.1 s-1. At 75% O2 supply, the R2* had reached a saturation level, with 16.4 ± 0.7 s-1 (P = 0.02), without a significant further decrease for 100% O2. The R2*-response of GM correlated positively with CO2 partial pressure (R = 0.69 ± 0.19) and negatively with SaO2 (R = -0.74 ± 0.17). The WM showed a similar progressive, but non-significant, decrease in the relaxation rates, with an increase in oxygen intake (P = 0.055). The Hill's model predicted a maximum R2* response of the GM, of 3.5%, with half the maximum at 68% oxygen concentration. Conclusions: The GM-R2* responds to hyperoxia in a concentration-dependent manner, suggesting that monitoring and modeling of the R2*-response may provide new oxygenation biomarkers for tumor therapy or assessment of cerebrovascular reactivity in patients.


Sign in / Sign up

Export Citation Format

Share Document