Using Excel to Evaluate Shear Strength Parameters of Soil

2013 ◽  
Vol 709 ◽  
pp. 579-582
Author(s):  
Meng Hua Fan

It is difficult to determine the Mohr-Coulomb failure envelope visually, and it is strongly influenced by abnormal test data evaluating the shear strength parameters of soil via trend line and unable to adjust the scope of permissible error. So it is recommended to evaluate shear strength parameters of soil using Solver of Excel for direct shear tests and triaxial tests and you can control the allowable deviation. The mathematics model of nonlinear programming was established to evaluate shear strength parameters of soil from the results of direct shear test and triaxial shear test. The related Excel worksheet was created and the optimum results of the objective function were obtained by setting the Solver parameters dialog box accurately. The method is simple, inexpensive and rapid.

Author(s):  
Khaled Zahran ◽  
Hany El Naggar

Tire-derived aggregate (TDA), a relatively new construction material, has been gaining acceptance as a backfill material for embankments, trenches, and earth-retaining structures because of its lightweight and excellent geotechnical properties. Type A TDA has a basic geometric shape, with particles approximately 12 to 100 mm in size. As a result of the simplicity and accuracy of the direct shear test, most laboratories choose this test in preference to more complex tests. However, TDA requires large-scale direct shear apparatus because of the consistently large size of its particles, and few facilities own this type of apparatus. Depending on the shear box dimensions, the aspect ratio of the particle size to the box dimensions may lead to variations in the shear strength results of the sample being evaluated. This research focuses on studying the effect of TDA sample size on the shear strength results of direct shear tests by using five different shear box sizes. The findings show that the angle of internal friction increases slightly as the dimensions of the shear box decrease. It was found that the maximum variation in the angle of internal friction and the cohesion results of the different shear boxes was only 1.9° and 2.4 kPa, respectively. These differences should be taken into consideration when TDA shear test results are used in the geotechnical design. It is recommended that a shear box with an aspect ratio (W/Dmax) greater than or equal to 4 should be used when evaluating the shear strength parameters of TDA.


2019 ◽  
Vol 92 ◽  
pp. 12003
Author(s):  
Leila Maria Coelho de Carvalho ◽  
Michelé Dal Toé Casagrande

Inclusion of natural fibers (sisal, curauá, coco fiber and others) for soil improvement has been the study object in diverse geotechnical areas and it is a topic of growing interest, within the research area of new geotechnical materials. The state of the art in this subject highlights excellent results as soil strength parameters improve and post-cracking strength (toughness) increase. Soil reinforcement technique with fibers is established in the technology of composite materials, this being a combination of two or more materials presenting properties that the component materials do not possess on their own. The aim of this paper is to study the mechanical behaviour of sand-fiber composite by inserting natural curauá fibers into a sandy matrix, with different fiber contents. The fibers were randomly distributed in the soil mass. The experimental program included physical and mechanical characterization of the composites, using full-scale direct shear tests, with samples measuring 30 x 30 cm and 15 cm high. Direct shear tests were carried out using fibers with 25 mm length and 0.5 and 0.75% fiber content (relative to the soil dry weight). The specimens also presented a relative density of 50% and moisture content of 10%. It was sought to establish a pattern behaviour so that the addition of curauá fiber influence can be explained, thus, comparing with the sandy soil shear strength parameters. Inclusion of natural curauá fibers as soil reinforcement presented satisfactory results, as an increase in the soil shear strength parameters was observed when compared with sandy soil results.


2019 ◽  
Vol 2019 ◽  
pp. 1-11
Author(s):  
Yanhai Wang ◽  
Jianlin Li ◽  
Qiao Jiang ◽  
Yisheng Huang ◽  
Xinzhe Li

Under the action of rainwater seepage, geological origin, and human activities, the soil shear strength parameters will have spatial variability along the slope direction. After collecting samples of silty clay at a slope in the Three Gorges Reservoir area as the research object, not only the large-scale direct shear test was carried out on the site but also the direct shear test, water content test, density test, and particle grading analysis test were carried out in the laboratory with the undisturbed soil. The variation law and mechanism of soil shear strength parameters along slope were studied. The results indicate the following: (1) The coefficient of variation of shear strength parameters along the slope is relatively large. With the decrease of the elevation of the test location, the cohesion value tends to be strengthened, while the friction angle tends to degrade. (2) The mechanism of the variation law of soil shear strength parameters along the slope, which is mainly due to the decrease of the elevation, the decrease of the edges and angles between the particles, and the increase of the clay content is determined. (3) The variation model of shear strength parameters along the slope is proposed, which can provide a reference for relevant projects.


2019 ◽  
Vol 11 (19) ◽  
pp. 5397 ◽  
Author(s):  
Liang Jia ◽  
Jian Guo ◽  
Yanbin Jiang ◽  
Yong Fu ◽  
Zhidong Zhou ◽  
...  

Loess is a typical collapsible soil, which is widely distributed in the upper and middle areas around the Yellow River of China. The stabilization of loess with lime provides a significant improvement in the physical and the mechanical characteristics of the loess and is therefore widely used in the pavement base and subgrade. Therefore, a systematic investigation of Mohr-Coulomb failure envelope of lime stabilized loess needs to be conducted. In this pursuit, the present research envisages the investigation of the effects of the lime content, porosity and curing time on the strength parameters (friction angle (φ) and cohesion (c)), using a series of triaxial tests performed on lime stabilized loess specimens. The experimental results revealed that the friction angle (φ) was independent of the lime content, the porosity and the curing time of the specimen for a given lime stabilized loess, while the factors mentioned above had a significant effect on the cohesion (c) of the lime stabilized loess. For a relatively short curing time (7 days), the change in the lime content did not present an obvious effect on the cohesion (c) of the stabilized loess. However, when the curing time (28, 90 and 180 days) was longer, the increase of the lime content significantly enhanced the cohesion of the stabilized loess. When the lime content was constant, the cohesion (c) of the stabilized loess increased linearly with the decrease in the void ratio. A power function equation was proposed to assess the comprehensive influences of the factors like the lime content, porosity and curing time on cohesion (c). Finally, the Mohr-Coulomb failure envelopes were drawn based on the triaxial test for 47 specimens with various curing time and confining pressure, and the shear strength parameters obtained by the proposed equation were also compared with the experimental results.


Sign in / Sign up

Export Citation Format

Share Document