A Novel Hybrid Optimization Method of Shuffled Frog Leaping Algorithm and Particle Swarm Optimization

2013 ◽  
Vol 717 ◽  
pp. 433-438 ◽  
Author(s):  
Mei Jin Lin ◽  
Fei Luo ◽  
Yu Ge Xu ◽  
Long Luo

Shuffled frog leaping algorithm (SFLA) is a meta-heuristic algorithm, which combines the social behavior technique and the global information exchange of memetic algorithms. But the SFLA has the shortcoming of low convergence speed while solving complex optimization problems. Particle swarm optimization (PSO) is a fast searching algorithms, but easily falls into the local optimum for the diversity scarcity of particles. In the paper, a new hybrid optimization called SFLA-PSO is proposed, which introduced PSO to SFLA by combining the fast search strategy of PSO and global search strategy of SFLA. Six benchmark functions are selected to compare the performance of SFLA-PSO, basic PSO, wPSO and SFLA. The simulation results show that the proposed algorithm SFLA-PSO possesses outstanding performance in the convergence speed and the precision of the global optimum solution.

Author(s):  
Cheng-Hung Chen ◽  
Marco P. Schoen ◽  
Ken W. Bosworth

A novel Condensed Hybrid Optimization (CHO) algorithm using Enhanced Continuous Tabu Search (ECTS) and Particle Swarm Optimization (PSO) is proposed. The proposed CHO algorithm combines the respective strengths of ECTS and PSO. The ECTS is a modified Tabu Search (TS), which has good search capabilities on large search spaces. In this study, ECTS is utilized to define smaller search spaces, which are used in a second stage by the basic PSO to find the respective local optimum. The ECTS covers the global search space by using a TS concept called diversification and then selects the most promising areas in the search space. Once the promising regions in the search space are defined, the proposed CHO algorithm employs another TS concept called intensification in order to search the promising area thoroughly. The proposed CHO algorithm is tested with the multi-dimensional Hyperbolic and Rosenbrock problems. Compared to other four algorithms, the simulations results indicate that the accuracy and effectiveness of the proposed CHO algorithm.


2011 ◽  
Vol 268-270 ◽  
pp. 1188-1193 ◽  
Author(s):  
Zuo Yong Li ◽  
Chun Xue Yu ◽  
Zheng Jian Zhang

In order to avoid premature convergence and improve the precision of solution using basic shuffled frog leaping algorithm (SFLA), based on immune evolutionary particle swarm optimization, a new shuffled frog leaping algorithm was proposed. The proposed algorithm integrated the global search mechanism in the particle swarm optimization (PSO) into SFLA, so as to search thoroughly near by the space gap of the worst solution, and also integrated the immune evolutionary algorithm into SFLA making immune evolutionary iterative computation to the optimal solution in the sub-swarm, so as to use the information of optimal solution fully. This algorithm can not only free from trapping into local optima, but also close to the global optimal solution with the higher precision. Calculation results show that the immune evolutionary particle swarm shuffled frog leaping algorithm (IEPSOSFLA) has the optimal searching ability and stability all the better than those of basic SFLA.


Author(s):  
Jaouher Chrouta ◽  
Fethi Farhani ◽  
Abderrahmen Zaafouri

In the present study, we suggest a modified version of heterogeneous multi-swarm particle swarm optimization (MSPSO) algorithm, that allows the amelioration of its performance by introducing an adaptive inertia weight approach. In order to bring about a balance between the exploration and exploitation characteristics of MSPSO allowing to promote information exchange amongst the subswarms. However, the classical MSPSO algorithm search behavior has not always been optimal in finding the optimal solution to certain problems, which results in falling into local optimum leading to premature convergence. The most advantages of the MSPSO there are easy to implement and there are few parameters to adjust. The inertia weight (w) is one of the most Particle Swarm Optimization’s (PSO) parameters. Controlling this parameter could facilitate the convergence and prevent an explosion of the swarm. To overcome the above limitations, this paper proposes a heterogeneous multi swarm PSO algorithm based on PSO number selection approach centred on the idea of particle swarm referred to as Multi-Swarm Particle Swarm Optimization algorithm with Factor selection strategy (FMSPSO). In the various process implementations of the particle swarm search, different parameter selection strategies are adopted to ameliorate the global search ability. The proposed FMSPSO is able to improve the population’s diversity and better explore the entire feature space. The statistical test and indicators that are reported in the specialized literature demonstrate that the suggested approach is superior in terms of efficiency to nine other popular PSO algorithms in solving the optimization problem of complex problems. The approach suggests that FMSPSO reaches a very promising performance for solving different types of optimization problems, leading eventually to higher solution accuracy.


2018 ◽  
Vol 15 (2) ◽  
pp. 1-20 ◽  
Author(s):  
S. Bharath Bhushan ◽  
Pradeep C. H. Reddy

Cloud is evolving as an outstanding platform to deliver cloud services on a pay-as-you-go basis. The selection and composition of cloud services based on QoS criteria is formulated as NP hard optimization problem. Traditionally, many optimization techniques are applied to solve it, but it suffers from slow convergence speed, large number of calculations, and falling into local optimum. This article proposes a hybrid particle swarm optimization (HPSO) technique that combines particle swarm optimization (PSO) and fruit fly (FOA) to perform the evolutionary search process. The following determines a pareto optimal service set which is non-dominated solution set as input to the proposed HPSO. In the proposed HPSO, the parameters such as position and velocity are redefined, and while updating, the smell operator of fruit fly is used to overcome the prematurity of PSO. The FOA enhances the convergence speed with good fitness value. The experimental results show that the proposed HPSO outperforms the simple particle swarm optimization in terms of fitness value, execution time, and error rate.


2018 ◽  
Vol 232 ◽  
pp. 03015
Author(s):  
Changjun Wen ◽  
Changlian Liu ◽  
Heng Zhang ◽  
Hongliang Wang

The particle swarm optimization (PSO) is a widely used tool for solving optimization problems in the field of engineering technology. However, PSO is likely to fall into local optimum, which has the disadvantages of slow convergence speed and low convergence precision. In view of the above shortcomings, a particle swarm optimization with Gaussian disturbance is proposed. With introducing the Gaussian disturbance in the self-cognition part and social cognition part of the algorithm, this method can improve the convergence speed and precision of the algorithm, which can also improve the ability of the algorithm to escape the local optimal solution. The algorithm is simulated by Griewank function after the several evolutionary modes of GDPSO algorithm are analyzed. The experimental results show that the convergence speed and the optimization precision of the GDPSO is better than that of PSO.


2022 ◽  
Vol 7 (4) ◽  
pp. 5563-5593
Author(s):  
Peng Wang ◽  
◽  
Weijia He ◽  
Fan Guo ◽  
Xuefang He ◽  
...  

<abstract><p>The atom search optimization (ASO) algorithm has the characteristics of fewer parameters and better performance than the traditional intelligent optimization algorithms, but it is found that ASO may easily fall into local optimum and its accuracy is not higher. Therefore, based on the idea of speed update in particle swarm optimization (PSO), an improved atomic search optimization (IASO) algorithm is proposed in this paper. Compared with traditional ASO, IASO has a faster convergence speed and higher precision for 23 benchmark functions. IASO algorithm has been successfully applied to maximum likelihood (ML) estimator for the direction of arrival (DOA), under the conditions of the different number of signal sources, different signal-to-noise ratio (SNR) and different population size, the simulation results show that ML estimator with IASO algorithum has faster convergence speed, fewer iterations and lower root mean square error (RMSE) than ML estimator with ASO, sine cosine algorithm (SCA), genetic algorithm (GA) and particle swarm optimization (PSO). Therefore, the proposed algorithm holds great potential for not only guaranteeing the estimation accuracy but also greatly reducing the computational complexity of multidimensional nonlinear optimization of ML estimator.</p></abstract>


Sign in / Sign up

Export Citation Format

Share Document