Rapidly Start-Up and Performance of the EGSB Reactor Treating Actual Coking Wastewater when Seeded with Digestion Sludge

2013 ◽  
Vol 726-731 ◽  
pp. 2567-2571
Author(s):  
Chun Juan Dong ◽  
Qing Ye Pan ◽  
Hong Yu Lu ◽  
Ya Quan Sun

To accomplish rapidly the granulation process of digestion sludge for the treatment of actual coking wastewater and meanwhile achieve high COD, phenol, SCN- and CN- removal, the EGSB reactor was employed with two operation stages. StageI: Granular sludge was formed from digestion sludge using brewery wastewater as substrate in the anaerobic way (meanwhile adding little granules, which were 1/7 of the total biomass). StageII: Granular sludge was acclimatized with the actual coking wastewater through continuous micro-oxygenation way. The experimental results showed that the granular sludge could quickly form in 10d in the EGSB reactor seeded with digestion sludge and little loose granules. It took only about 6 months for the successful micro-aerobic acclimating of the granular sludge by the actual coking wastewater. The removal efficiencies of COD, phenol, SCN- and CN- were 72.9, 99.5, 95.7 and 97.5%, respectively, at 12.1h hydraulic retention time (HRT) and for 631-922, 12.8-37.7, 66.7-232.7 and 0.3-57.8mg.L-1 influent COD, phenol, SCN- and CN- concentration.

2017 ◽  
Vol 77 (3) ◽  
pp. 714-720 ◽  
Author(s):  
J. C. Leyva-Díaz ◽  
A. Rodríguez-Sánchez ◽  
J. González-López ◽  
J. M. Poyatos

Abstract A membrane bioreactor (MBR) and a hybrid moving bed biofilm reactor-membrane bioreactor (hybrid MBBR-MBR) for municipal wastewater treatment were studied to determine the effect of salinity on nitrogen removal and autotrophic kinetics. The biological systems were analyzed during the start-up phase with a hydraulic retention time (HRT) of 6 h, total biomass concentration of 2,500 mg L−1 in the steady state, and electric conductivities of 1.05 mS cm−1 for MBR and hybrid MBBR-MBR working under regular salinity and conductivity variations of 1.2–6.5 mS cm−1 for MBR and hybrid MBBR-MBR operating at variable salinity. The variable salinity affected the autotrophic biomass, which caused a reduction of the nitrogen degradation rate, an increase of time to remove ammonium from municipal wastewater and longer duration of the start-up phase for the MBR and hybrid MBBR-MBR.


2014 ◽  
Vol 161 ◽  
pp. 155-161 ◽  
Author(s):  
Noor Hasyimah Rosman ◽  
Aznah Nor Anuar ◽  
Shreeshivadasan Chelliapan ◽  
Mohd Fadhil Md Din ◽  
Zaini Ujang

2014 ◽  
Vol 154 ◽  
pp. 162-170 ◽  
Author(s):  
Agnieszka Cydzik-Kwiatkowska ◽  
Paulina Rusanowska ◽  
Magdalena Zielińska ◽  
Katarzyna Bernat ◽  
Irena Wojnowska-Baryła

2011 ◽  
Vol 45 (16) ◽  
pp. 4711-4721 ◽  
Author(s):  
Khalida Muda ◽  
Azmi Aris ◽  
Mohd Razman Salim ◽  
Zaharah Ibrahim ◽  
Mark C.M. van Loosdrecht ◽  
...  

2010 ◽  
Vol 113-116 ◽  
pp. 1176-1181
Author(s):  
Hui Ting Li ◽  
Yong Feng Li ◽  
Yan Jiao Gao ◽  
Shu Ai Wang

A laboratory-scale hybrid anaerobic baffled reactor (HABR) with five compartments using synthetic brewery wastewater as organic loading rates (OLRs) was investigated for the start-up performance and the effects of microbial community segregation on reactor start-up. Experimental results demonstrated that it was found that the COD removal efficiencies were 92~96% at 1.2 kgCOD/(m3•d) feeding over a period of 33 d, after which the reactors then successfully started. The highest percentage of CO2 in biogas was found in Compartment 1, thereafter decreased from Compartment 2 to Compartment 5 which corresponded to the increased of the percentage of CH4. It indicated that the proper anaerobic consortium in each separate compartment was developed along with specific environmental conditions, which offers the explanations that high treatment efficiency of HABR accompanied by high process stability and low operational requirements in start-up period.


2015 ◽  
Vol 8 (6) ◽  
pp. 780-786 ◽  
Author(s):  
Hina Rizvi ◽  
Nasir Ahmad ◽  
Farhat Abbas ◽  
Iftikhar Hussain Bukhari ◽  
Abdullah Yasar ◽  
...  

2014 ◽  
Vol 31 (6) ◽  
pp. 317-323 ◽  
Author(s):  
Mahyar Ghorbanian ◽  
Robert M. Lupitskyy ◽  
Jagannadh V. Satyavolu ◽  
R. Eric Berson

2015 ◽  
Vol 57 (40) ◽  
pp. 18597-18605 ◽  
Author(s):  
Maizatul Asnie Mohd Aris ◽  
Shreeshivadasan Chelliapan ◽  
Mohd Fadhil Md. Din ◽  
Aznah Nor Anwar ◽  
Rafidah Shahperi ◽  
...  

1998 ◽  
Vol 41 (3) ◽  
pp. 284-287
Author(s):  
S. Videla ◽  
C. Isaacs ◽  
M. Cristina Diez

Wastewater from a hardboard mill characterized by a high organic content (15-30 g/L COD) was studied in a bench scale sequential aerated system in order to define a start up strategy. Inlet COD concentration varied from 0.5 to 25 g/L and the hydraulic retention time was maintained at 5 days. The sequential system proposed could reduce BOD, COD, TSS and phenol over 90% except when the inlet COD concentration was lower than 25 g/L.


1992 ◽  
Vol 25 (1) ◽  
pp. 99-106 ◽  
Author(s):  
M. S. T. Rubindamayugi ◽  
H. J. M. Op Den Camp ◽  
H. J. Lubberding ◽  
H. J. Gijzen ◽  
G. D. Vogels

Influence of hydraulic retention time (HRT) on start-up of Polyurethane Carrier Reactors treating Volatile Fatty Acids (VFA) based wastewater, at constant organic loading rate (OLR) was investigated. OLR was increased stepwise after start-up to evaluate the influence of HRT on process stability. Four parallel experiements were conducted at HRTs of 48, 24, 18 and 12 hours. Results indicate an influence of HRT on duration of start-up period, and process stability after start-up. The reactor operating at HRT of 24 hours required only a relatively stort start-up period and showed higher process stability under steady-state condition. Analysis of individual VFA degradation indicated that butyrate and propionate consuming acetogenic bacteria increased in sigmoid fashion during start-up. Changes in acetate degradation do not show the true increase of acetoclastic population. Instead they reflect concomitant activity of VFA catabolizing acetogens and aceloclastic methanogens . Immobilized biomass increased exponentially during the first three weeks of start-up. The differences in start-up periods between reactors was probably due to differences in quality and activity of biomass immobilized at different HRTs. The HRT of 24 hours was most optimal to obtain stable reactor performance within a short startup period.


Sign in / Sign up

Export Citation Format

Share Document