Influence of Hydraulic Retention Time on Start-Up and Process Stability of Polyurethane Carrier Reactions

1992 ◽  
Vol 25 (1) ◽  
pp. 99-106 ◽  
Author(s):  
M. S. T. Rubindamayugi ◽  
H. J. M. Op Den Camp ◽  
H. J. Lubberding ◽  
H. J. Gijzen ◽  
G. D. Vogels

Influence of hydraulic retention time (HRT) on start-up of Polyurethane Carrier Reactors treating Volatile Fatty Acids (VFA) based wastewater, at constant organic loading rate (OLR) was investigated. OLR was increased stepwise after start-up to evaluate the influence of HRT on process stability. Four parallel experiements were conducted at HRTs of 48, 24, 18 and 12 hours. Results indicate an influence of HRT on duration of start-up period, and process stability after start-up. The reactor operating at HRT of 24 hours required only a relatively stort start-up period and showed higher process stability under steady-state condition. Analysis of individual VFA degradation indicated that butyrate and propionate consuming acetogenic bacteria increased in sigmoid fashion during start-up. Changes in acetate degradation do not show the true increase of acetoclastic population. Instead they reflect concomitant activity of VFA catabolizing acetogens and aceloclastic methanogens . Immobilized biomass increased exponentially during the first three weeks of start-up. The differences in start-up periods between reactors was probably due to differences in quality and activity of biomass immobilized at different HRTs. The HRT of 24 hours was most optimal to obtain stable reactor performance within a short startup period.

2002 ◽  
Vol 45 (12) ◽  
pp. 167-174 ◽  
Author(s):  
J.-O. Kim ◽  
I. Somiya ◽  
E.-B. Shin ◽  
W. Bae ◽  
S.-K. Kim ◽  
...  

To investigate the treatment performance of membrane-coupled anaerobic volatile fatty acids fermentor system, the effects of operational parameters for volatile fatty acids production were evaluated through experiments and a mathematical model. The volatile fatty acids recovery ratio was largely affected by the change of hydraulic retention time, reaching its maximum value at 12 hrs. Over the range of hydraulic retention time 8 to 96 hrs, the volatile fatty acids recovery ratio decreased with the increase of hydraulic retention time above 12 hrs, while the ratio of mineralization and gasification increased. Hydraulic retention time and membrane filtration ratio should be maintained less than 1 day and above 0.9, respectively, to attain over 40% of organic materials recovery ratio at 10 days of solids retention time. When the hydrolysis rate constant was 0.01 hr−1, the organic loading rate should be maintained at above 1.0 (kgC/m3/day) to attain over 45% of volatile fatty acids recovery ratio. Based on experimental and simulated results, membrane-coupled anaerobic volatile fatty acids fermentor system was thought to be effective for dissolved organics recovery from coagulated sewage sludge.


2021 ◽  
Vol 296 ◽  
pp. 113064
Author(s):  
Carina Malinowsky ◽  
Willian Nadaleti ◽  
Letícia Rech Debiasi ◽  
Ailton João Gonçalves Moreira ◽  
Remy Bayard ◽  
...  

2011 ◽  
Vol 64 (4) ◽  
pp. 967-973
Author(s):  
S. Koyunluoglu-Aynur ◽  
R. Riffat ◽  
S. Murthy

The objective of the present work was to evaluate the effect of hydraulic retention time (HRT) on hydrolysis and acidogenesis for the pretreatment processes: acid phase digestion (APD) and autothermal thermophilic aerobic digestion (ATAD) using blended municipal sludge. The effect of the different pretreatment steps on mesophilic anaerobic digestion (MAD) was evaluated in terms of methane yield, keeping the operating conditions of the MAD the same for all systems. Best operating conditions for both APD and ATAD were observed for 2.5 d HRT with high total volatile fatty acids (tVFA), and the highest methane yield observed for MAD. No significant difference was observed between the two processes in terms of overall volatile solids (VS) reduction with same total HRT. The autothermal process produced heat of 14,300 J/g VS removed from hydrolytic and acetogenic reactions without compromising overall methane yields when the HRT was 2.5 d or lower and the total O2 used was 0.10 m3 O2/g VS added or lower. However, the process needs the input of oxygen and engineering analysis should balance these differences when considering the relative merits of the two pretreatment processes. This is the first study of its kind directly comparing these two viable pretreatment processes with the same sludge.


2018 ◽  
Vol 7 (2) ◽  
pp. 93-100 ◽  
Author(s):  
Agus Haryanto ◽  
Sugeng Triyono ◽  
Nugroho Hargo Wicaksono

The efficiency of biogas production in semi-continuous anaerobic digester is influenced by several factors, among other is loading rate. This research aimed at determining the effect of hydraulic retention time (HRT) on the biogas yield. Experiment was conducted using lab scale self-designed anaerobic digester of 36-L capacity with substrate of a mixture of fresh cow dung and water at a ratio of 1:1. Experiment was run with substrate initial amount of 25 L and five treatment variations of HRT, namely 1.31 gVS/L/d (P1), 2.47 gVS/L/d (P2), 3.82 gVS/L/d (P3), 5.35 gVS/L/d (P4) and 6.67 gVS/L/d (P5). Digester performance including pH, temperature, and biogas yield was measured every day. After stable condition was achieved, biogas composition was analyzed using a gas chromatograph. A 10-day moving average analysis of biogas production was performed to compare biogas yield of each treatment. Results showed that digesters run quite well with average pH of 6.8-7.0 and average daily temperature 28.7-29.1. The best biogas productivity (77.32 L/kg VSremoval) was found in P1 treatment (organic loading rate of 1.31 g/L/d) with biogas yield of 7.23 L/d. With methane content of 57.23% treatment P1 also produce the highest methane yield. Biogas production showed a stable rate after the day of 44. Modified Gompertz kinetic equation is suitable to model daily biogas yield as a function of digestion time.Article History: Received March 24th 2018; Received in revised form June 2nd 2018; Accepted June 16th 2018; Available onlineHow to Cite This Article: Haryanto, A., Triyono, S., and Wicaksono, N.H. (2018) Effect of Loading Rate on Biogas Production from Cow Dung in A Semi Continuous Anaerobic Digester. Int. Journal of Renewable Energy Development, 7(2), 93-100.https://doi.org/10.14710/ijred.7.2.93-100


2011 ◽  
Vol 64 (2) ◽  
pp. 320-325 ◽  
Author(s):  
J. Gustavsson ◽  
B. H. Svensson ◽  
A. Karlsson

The aim of this study was to investigate the effect of trace element supplementation on operation of wheat stillage-fed biogas tank reactors. The stillage used was a residue from bio-ethanol production, containing high levels of sulfate. In biogas production, high sulfate content has been associated with poor process stability in terms of low methane production and accumulation of process intermediates. However, the results of the present study show that this problem can be overcome by trace element supplementations. Four lab-scale wheat stillage-fed biogas tank reactors were operated for 345 days at a hydraulic retention time of 20 days (37 °C). It was concluded that daily supplementation with Co (0.5 mg L−1), Ni (0.2 mg L−1) and Fe (0.5 g L−1) were required for maintaining process stability at the organic loading rate of 4.0 g volatile solids L−1 day−1.


2020 ◽  
Author(s):  
Dejene Tsegaye Bedane ◽  
Mohammed Mazharuddin Khan ◽  
Seyoum Leta Asfaw

Abstract Background : Wastewater from agro-industries such as slaughterhouse is typical organic wastewater with high value of biochemical oxygen demand, chemical oxygen demand, biological organic nutrients (Nitrogen and phosphate) which are insoluble, slowly biodegradable solids, pathogenic and non-pathogenic bacteria and viruses, parasite eggs. Moreover it contains high protein and putrefies fast leading to environmental pollution problem. This indicates that slaughterhouses are among the most environmental polluting agro-industries. Anaerobic digestion is a sequence of metabolic steps involving consortiums of several microbial populations to form a complex metabolic interaction network resulting in the conversation of organic matter into methane (CH 4 ), carbon dioxide (CO 2 ) and other trace compounds. Separation of the phase permits the optimization of the organic loading rate and HRT based on the requirements of the microbial consortiums of each phase. The purpose of this study was to optimize the working conditions for the hydrolytic - acidogenic stage in two step/phase anaerobic digestion of slaughterhouse wastewater. The setup of the laboratory scale reactor was established at Center for Environmental Science, College of Natural Science with a total volume of 40 liter (36 liter working volume and 4 liter gas space). The working parameters for hydrolytic - acidogenic stage were optimized for six hydraulic retention time 1-6 days and equivalent organic loading rate of 5366.43 – 894.41 mg COD/L day to evaluate the effect of the working parameters on the performance of hydrolytic – acidogenic reactor. Result : The finding revealed that hydraulic retention time of 3 day with organic loading rate of 1,788.81 mg COD/L day was a as an optimal working conditions for the parameters under study for the hydrolytic - acidogenic stage. The degree of hydrolysis and acidification were mainly influenced by lower hydraulic retention time (higher organic loading rate) and highest values recorded were 63.92 % at hydraulic retention time of 3 day and 53.26% at hydraulic retention time of 2 day respectively. Conclusion : The finding of the present study indicated that at steady state the concentration of soluble chemical oxygen demand and total volatile fatty acids increase as hydraulic retention time decreased or organic loading rate increased from 1 day hydraulic retention time to 3 day hydraulic retention time and decreases as hydraulic retention time increase from 4 to 6 day. The lowest concentration of NH 4 + -N and highest degree of acidification was also achieved at hydraulic retention time of 3 day. Therefore, it can be concluded that hydraulic retention time of 3 day/organic loading rate of 1,788.81 mg COD/L .day was selected as an optimal working condition for the high performance and stability during the two stage anaerobic digestion of slaughterhouse wastewater for the hydrolytic-acidogenic stage under mesophilic temperature range selected (37.5℃). Keywords : Slaughterhouse Wastewater, Hydrolytic – Acidogenic, Two Phase Anaerobic Digestion, Optimal Condition, Agro-processing wastewater


REAKTOR ◽  
2019 ◽  
Vol 19 (1) ◽  
pp. 18-25
Author(s):  
Ariani Dwi Astuti ◽  
Dewi Intania Ayu

Tofu which is made by grinding soy bean, generates huge amount of wastewater and thus considered as one of the most polluted food-industrial effluent owing to its high values of organic contents. The small industries of tofu preparation process release the wastewater directly into the water body without being treated first. Prior to discharge this wastewater into the waterbody, the wastewater must be treated to reduce the possibility of negative impact and the contamination of the waterbody. For these small industries, the best alternative of wastewater treatment is one which has the following criteria: easy in operation, low cost operation, low volumes of sludge produced, and can be used in high concentration wastewater. In this research, bioreactor anaerobic-aerobic with media bioball is used. The highest removal efficiency of COD took place in anaerobic zones. Bioreactors were operated with the variations of retention time at 24 hours, 18 hours, and 12 hours. The COD removal efficiency for Hydraulic Retention Time (HRT) of 24 hours, 18 hours and 12 hours were found 90.3% (organic loading rate is 15.1 kg COD/m3.day), 84.4% and 76.3% respectively. The experiment showed that the longer of the hydraulic retention time (HRT), the higher the removal efficiency could be achieved. These occurred because a longer HRT will extend the contact time between wastewater and microorganisms attached. Therefore, microorganisms have a longer time to degrade organic matter in wastewater. Although the removal efficiency in these three-HRT was found high, the effluent of the reactor was still above the effluent standard based on regulation of Ministry of Environmental Permen LH No. 5/2014. Kinetics using Eckenfelder Equation results R2 equal to 0.9991, n equal to 0.293 and K equivalent to 7.3577 mg/L. Keywords: tofu wastewater, anaerobe, aerobe, bioball, wastewater, treatment, attached growth


Sign in / Sign up

Export Citation Format

Share Document