Phase Transformation Behaviors of Nb-V-Ti Microalloyed Pipeline Steel X70

2013 ◽  
Vol 750-752 ◽  
pp. 380-384
Author(s):  
Yu Hui Wang ◽  
Ya Nan Zheng ◽  
Tian Sheng Wang ◽  
Bo Liao ◽  
Li Gang Liu

The CCT (continuous cooling transformation) diagrams of the Nb-V-Ti without Mo containing microalloyed pipeline steel X70 were investigated. The microstructures observed in continuous cooled specimens are composed of P (pearlite), PF (polygonal ferrite), QF (quasi-polygonal ferrite), and GF (granular bainite ferrite). At low cooling rates between 0.1°C/s and 1°C/s, the microstructure of the steel consisted of banded ferrite and pearlite but higher cooling rates suppressed its formation.

Metals ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1562
Author(s):  
Zhenglei Tang ◽  
Ran Guo ◽  
Yang Zhang ◽  
Zhen Liu ◽  
Yuezhang Lu ◽  
...  

The expansion curves of the continuous cooling transformation of undercooled austenite of SXQ500/550DZ35 hydropower steel at different heating temperatures and cooling rates were measured by use of a DIL805A dilatometer. Combined with metallography and Vickers hardness measurement, the continuous cooling transformation diagrams (CCT) of the studied steel under two different states were determined. The results show that in the first group of tests, after the hot-rolled specimens were austenitized at 920 °C, when the cooling rate was below 1 °C·s−1, the microstructure was composed of ferrite (F), pearlite (P) and bainite (B). With the cooling rates between 1 °C·s−1 and 5 °C·s−1, the microstructure was mainly bainite, and martensite (M) formed as the cooling rate reached 5 °C·s−1. When the cooling rate was up to 10 °C·s−1, the microstructure was completely martensite and the hardness value increased significantly. In the second group of tests, after the hot-rolled specimens were quenched at 920 °C and then heated at an intercritical temperature of 830 °C, in comparison with the first group of tests, and except for additional undissolved ferrites in each cooling rate range, the other microstructure types were basically the same. Due to the existence of undissolved ferrite, the microstructures of the specimens heated at intercritical temperatures were much finer, and the toughness values at low temperatures were better.


1991 ◽  
Vol 6 (5) ◽  
pp. 969-986 ◽  
Author(s):  
S. Djanarthany ◽  
C. Servant ◽  
R. Penelle

We have analyzed the phase relationships in two titanium aluminides containing 3.4 at. % Mo with different aluminum compositions. The alloys were first homogenized in the β field, then cooled continuously at different cooling rates from 80 °C/s to 0.1 °C/s. The continuous cooling transformation diagrams (CCT) show that phase transformations and resulting microstructures are highly dependent on cooling rate. The microstructure consists of ordered α2 (DO19), ordered β0 (B2), and athermal ω (hexagonal) phases. The “tweed microstructure” is observed. The evolution of microhardness was determined as well as the relative partitioning of Al and Mo in (α2', α2) and β0 phases as a function of cooling rate.


2016 ◽  
Vol 1812 ◽  
pp. 129-134 ◽  
Author(s):  
Gerardo Altamirano-Guerrero ◽  
Emmanuel J. Gutiérrez-Castañeda ◽  
Omar García-Rincón ◽  
Armando Salinas-Rodríguez

ABSTRACTThis article outlines the use of quenching dilatometry in phase transformation kinetics research in steels under continuous cooling conditions. For this purpose, the phase transformation behavior of a hot-rolled heat treatable steel was investigated over the cooling rate range of 0.1 to 200 °C/s. The start and finish points of the austenite transformation were identified from the dilatometric curves and then the continuous cooling transformation (CCT) diagrams were constructed. The experimental CCT diagrams were verified by microstructural characterization using scanning electron microscopy (SEM) and Vickers micro-hardness. In general, results revealed that the quenching dilatometry technique is a powerful tool for the characterization and study of solid-solid phase transformations in steels. For cooling rates between 200 and 25 °C/s the final microstructure consists on plate-like martensite with the highest hardness values. By contrast, a mixture of phases of ferrite, bainite and pearlite predominated for slower cooling rates (10-0.1 °C/s).


2015 ◽  
pp. 197-211

Isothermal and continuous cooling transformation (CT) diagrams help users map out diffusion-controlled phase transformations of austenite to various mixtures of ferrite and cementite. This chapter discusses the application as well as limitations of these engineering tools in the context of heat treating eutectoid, hypoeutectoid, and proeutectoid steels. It also provides references to large collections of transformation diagrams and includes several diagrams that plot quenching and hardening transformations as a function of bar diameter.


2020 ◽  
Vol 835 ◽  
pp. 58-67
Author(s):  
Mohammed Ali ◽  
Antti J. Kaijalainen ◽  
Jaakko Hannula ◽  
David Porter ◽  
Jukka I. Kömi

The effect of chromium content and prior hot deformation of the austenite on the continuous cooling transformation (CCT) diagram of a newly developed low-carbon bainitic steel has been studied using dilatometer measurements conducted on a Gleeble 3800 simulator with cooling rates ranging from 2-80 °C/s. After austenitization at 1100 °C, specimens were either cooled without strain or given 0.6 strain at 880 °C prior to dilatometer measurements. The resultant microstructures have been studied using laser scanning confocal microscopy, scanning electron microscopy and macrohardness measurements. CCT and deformation continuous cooling transformation (DCCT) diagrams were constructed based on the dilatation curves, final microstructures and hardness values. Depending on the cooling rate, the microstructures of the investigated steels after cooling from the austenite region consist of one or more of the following microstructural components: lath-like upper bainite, i.e. bainitic ferrite (BF), granular bainite (GB), polygonal ferrite (PF) and pearlite (P). The proportion of BF to GB as well as the hardness of the transformation products decreased with decreasing cooling rate. The cooling rate at which PF starts to appear depends on the steel composition. With both undeformed and deformed austenite, increasing the chromium content led to higher hardenability and refinement of the microstructure, promoting the formation of BF and shifting the ferrite start curve to lower cooling rates. Prior hot deformation shifted the transformation curves to shorter times and higher temperatures and led to a reduction in hardness at the low cooling rates through the promotion of ferrite formation.


Sign in / Sign up

Export Citation Format

Share Document