bar diameter
Recently Published Documents


TOTAL DOCUMENTS

75
(FIVE YEARS 30)

H-INDEX

8
(FIVE YEARS 2)

2022 ◽  
Vol 955 (1) ◽  
pp. 012009
Author(s):  
M R Ahyar ◽  
P Setiyawan ◽  
C T Adinata ◽  
E Sukadana

Abstract Vierendeel is one of failure mechanisms in a castellated steel beam. Vierendeel mechanism is the main failure that occurs in a full high rectangular opening castellated beam. Vierendeel decrease castellated flexural capacity compare to the original wide flange section beam. One solution to prevent the vierendeel mechanism is by installing a diagonal stiffener in form of a steel bar on a castellated beam. The research’s purpose is finding the effect of different size of steel bar diameter on the flexural capacity. Four different sizes of steel bar diameter used in this research: 10 mm, 12mm, 16 mm, and 19 mm. Castellated beam flexural capacity is analysed with the method of truss analysis and pushover analysis. This study shows it can be infer that the bigger size of steel bar diameter does not always determine the higher flexural capacity of the castellated beam. Optimum value of the beam’s flexural capacity is affected by the strength of the flange section. The largest increment of flexural capacity between original wide flange compare to the castellated beam is 139.4% by using 16 mm diameter of the diagonal stiffener.


2021 ◽  
Vol 15 (1) ◽  
pp. 441-462
Author(s):  
Mereen H.F. Rasheed ◽  
Ayad Z.S. Agha ◽  
Bahman O. Taha

Background: The tangent of the relationship between bond stress and displacement (slip) is called the modulus of displacement and gives the basis for the theory. This theory is used to determine the stress distribution along the spliced reinforcement bars. Objective: This research presents a modification on the theory of the modulus of displacement to determine the stress distribution along the spliced reinforcement bond for fibrous reinforced concrete. Methods: 1- General differential equations are derived for concrete stress, stress in reinforcement bars and bond stress between reinforcement bars and surrounding concrete. 2-The general solutions of these D.E. are determined and Excel data sheets are prepared to apply these solutions and determine the concrete, steel and bond stresses. Results: Excel data sheets are prepared to determine the concrete, steel and bond stresses. The stresses are determined along the bar splice length considering the effect of steel fiber content. Conclusion: The maximum concrete stress is obtained at center x=0 and minimum at . Maximum bond stress obtained at and minimum at the center. The maximum steel stress at and minimum at . The value of (σcmax) increased linearly with increasing of (ρ). The concrete stress increased nonlinearly with (ρ%) and linearly with ( fy) and (fc’). Also increasing of (k) and bar diameter have small effects. The value of bond stress decreased linearly with (Qf) and (ρ%).


2021 ◽  
pp. 621-631
Author(s):  
Tomislav Kišiček ◽  
Tvrtko Renić ◽  
Ivan Hafner ◽  
Mislav Stepinac

2021 ◽  
Vol 1205 (1) ◽  
pp. 012011
Author(s):  
I Rozsypalova ◽  
J Prokes ◽  
Đ Cairović ◽  
F Girgle ◽  
P Danek ◽  
...  

Abstract Paper describes a testing procedure for the determination of tensile strength of the composite reinforcing bars subjected to elevated temperatures. Experimentally obtained results on GFRP bars with different diameter are presented and discussed. Moreover, a brief comparison with an analytical approach was included. Almost identical temperature reduction rate of tensile strength was observed for all tested specimens, regardless diameter of the bar. Therefore, it can be expected, that different bar diameter should not significantly affect the results especially if steady state conditions were assumed.


Energies ◽  
2021 ◽  
Vol 14 (17) ◽  
pp. 5263 ◽  
Author(s):  
Rafał Wyczółkowski ◽  
Marek Gała ◽  
Stanisław Szwaja ◽  
Andrzej Piotrowski

A method to obtain a radiation exchange factor FR in the bundle of steel round bars is presented. This parameter is required for determination of the radiative thermal conductivity krd, which is one of the basic thermal properties of the bar bundles. In the presented approach, the analyzed parameter is calculated indirectly. The initial point for calculations is the geometric model of the medium defined as a unit cell. Then, for the elements present in this cell, the thermal resistance of both conduction and radiation is determined. The radiation resistance is calculated from the radiosity balance of the surfaces enclosing the analyzed system. On this basis, the radiation thermal conductivity krd is calculated. Next, taking into account the bar diameter, the value of parameter FR is also determined. The analysis is performed at the process temperature range of 200 to 800 °C for three bar diameters: 10, 20 and 30 mm, and for the three porosities of the bundle. Different emissivity of bars in the range of 0.5 to 0.9 was also taken into account. Finally, a relationship that allows calculating the FR factor correlated with the emissivity of the bars and the bundle porosity was established. The krd obtained from the methodology presented and compared with the values calculated directly do not exceed 9%; however, after averaging over the entire temperature range of the process, the difference does not exceed 0.2%.


Materials ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 4378
Author(s):  
Rafał Wyczółkowski ◽  
Vazgen Bagdasaryan ◽  
Stanisław Szwaja

Cellular solid materials are commonly found in industrial applications. By definition, cellular solids are porous materials that are built of distinct cells. One of the groups of such materials contains metal foams. Another group of cellular metals contains bundles of steel bars, which create charges during the heat treatment of the bars. A granular structure connected by the lack of continuity of the solid phase is the main feature that distinguishes bundles from metal foams. The boundaries of the bundle cells are made of adjacent bars, with the internal region taking the form of an air cavity. In this paper, we discuss the possibility of using the Krischer model to determine the effective thermal conductivity of heat-treated bundles of steel bars based on the results of experimental tests and calculations. The model allows the kef coefficient to be precisely determined, although it requires the weighting parameter f to be carefully matched. It is shown that the value of f depends on the bar diameter, while its changes within the examined temperature range (25–800 °C) can be described using a third-degree polynomial. Determining the coefficients of such a polynomial is possible only when the effective thermal conductivity of the considered charge is known. Moreover, we analyze a simplified solution, whereby a constant value of the f coefficient is used for a given bar diameter; however, the kef values obtained thanks to this approach are encumbered with inaccuracy amounting to several dozen percentage points. The obtained results lead to the conclusion that the Krischer model cannot be used for the discussed case.


2021 ◽  
Vol 40 (3) ◽  
Author(s):  
Aldecira G. Diogenes ◽  
Elineudo P. de Moura ◽  
André S. Machado ◽  
Lindberg L. Gonçalves

2021 ◽  
Vol 11 (11) ◽  
pp. 4889
Author(s):  
Sherin Khadeeja Rahman ◽  
Riyadh Al-Ameri

The current research on concrete and cementitious materials focuses on finding sustainable solutions to address critical issues, such as increased carbon emissions, or corrosion attack associated with reinforced concrete structures. Geopolymer concrete is considered to be an eco-friendly alternative due to its superior properties in terms of reduced carbon emissions and durability. Similarly, the use of fibre-reinforced polymer (FRP) bars to address corrosion attack in steel-reinforced structures is also gaining momentum. This paper investigates the bond performance of a newly developed self-compacting geopolymer concrete (SCGC) reinforced with basalt FRP (BFRP) bars. This study examines the bond behaviour of BFRP-reinforced SCGC specimens with variables such as bar diameter (6 mm and 10 mm) and embedment lengths. The embedment lengths adopted are 5, 10, and 15 times the bar diameter (db), and are denoted as 5 db, 10 db, and 15 db throughout the study. A total of 21 specimens, inclusive of the variable parameters, are subjected to direct pull-out tests in order to assess the bond between the rebar and the concrete. The result is then compared with the SCGC reinforced with traditional steel bars, in accordance with the ACI 440.3R-04 and CAN/CSA-S806-02 guidelines. A prediction model for bond strength has been proposed using artificial neural network (ANN) tools, which contributes to the new knowledge on the use of Basalt FRP bars as internal reinforcement in an ambient-cured self-compacting geopolymer concrete.


2021 ◽  
Vol 12 (1) ◽  
pp. 43-49
Author(s):  
Sheikh Shakib ◽  
Abu Zakir Morshed

Cracking of cover concrete due to the corrosion of reinforcing steel is one of the main causes of deterioration in Reinforced Concrete (RC) structures. An outbound stress is developed in concrete surrounding the reinforcing steels due to the expansive corrosion products of reinforcement leading to cracking of the concrete cover. In this paper, the cracking pressure was simulated through a finite element modeling. The effect of geometrical and material parameters, i.e. concrete cover thickness, bar diameter, and concrete tensile strength, on the cracking pressure was also investigated. Abaqus 6.14 was used as modeling platform. The cracking pressure was found to dependent on the cover thickness and tensile strength of concrete. A higher pressure was required to initiate crack for a higher cover thicknesses and tensile strength. The cracking pressure was decreased with the increase in bar diameter. Finally the crack initiation and propagation has been simulated successfully for different arrangements of reinforcements. Journal of Engineering Science 12(1), 2021, 43-49


2021 ◽  
Vol 316 ◽  
pp. 227-232
Author(s):  
Yu.B. Egorova ◽  
L.V. Davydenko ◽  
A.V. Shmyrova

The article provides the results of a statistical research of the relation of mechanical properties and chemical composition of Ø 15-rolled, forged, and pressed bars made of various modifications of the Ti-6Al-4V titanium alloy. The authors studied the correlation of mechanical properties and the content of alloying elements, impurities, bar diameter, and post-annealing (using various industrial modes) structural parameters, on the basis of the analysis of production data, and established regression dependencies for estimating average values of mechanical properties of bars on aluminum and molybdenum strength equivalents of alloying elements and impurities.


Sign in / Sign up

Export Citation Format

Share Document