Wind Farm Grid Integration Simulation Analysis of the Impact of Power System Transient Stability

2013 ◽  
Vol 805-806 ◽  
pp. 334-337
Author(s):  
Shi Wei Su ◽  
You Wei Zhou ◽  
Wei Xiong

Analysis compares the direct access to a single set of wind power systemTwo groups of wind farm access system directlyMultiple sets of wind farm access system directly And Multiple sets of wind dispersion access system's impact on power system transient stability. And compare the simulation results, Concluded that wind farm access capacity and its topology structure's influence on system transient stability.

2013 ◽  
Vol 694-697 ◽  
pp. 846-849
Author(s):  
Jian Yuan Xu ◽  
Wei Fu Qi ◽  
Yun Teng

This paper mainly studies wind power fluctuations how to affect voltage stability after the wind power grid integration, and reactive power compensation equipment on improving effect. In certain parts of the wind farm, for example, firstly, analyzing the wind farm reactive power problems. Then introduce the reactive power compensation equipment that used in the wind farm. Finally, with PSCAD software, making a simulation analysis about the influence on the power grid voltage according to adopting the different reactive power compensation devices or not.


2011 ◽  
Vol 347-353 ◽  
pp. 791-794 ◽  
Author(s):  
Xiao Yan Bian ◽  
Guang Yue Li ◽  
Yang Fu

It’s a new challenge to power system stability with large wind farm’s integration. Taking the wind farm which consist of GE1.5MW double fed induction generators that has been modeled in the software PSS/E as the research object, The difference between the impact of wind farm and conventional generators integrated to grid in power system transient progress is analyzed. Besides, the impact on transient progress of increasing wind farm penetration and differnet interconnection with wind farm to power system is investigated.


2022 ◽  
Vol 9 ◽  
Author(s):  
Fei Tang ◽  
Xiaoqing Wei ◽  
Yuhan Guo ◽  
Junfeng Qi ◽  
Jiarui Xie ◽  
...  

The sooner the system instability is predicted and the unstable branches are screened, the timelier emergency control can be implemented for a wind power system. In this paper, aiming at the problem that the existing unstable branch screening methods are lack prejudgment, an unstable branch screening method for power system with high-proportion wind power is proposed. Firstly, the equivalent external characteristics model of the wind farm was deduced. And based on this, the out-of-step oscillation characteristics of the power system with high proportion wind power was analyzed. Secondly, based on the oscillation characteristics, line weak-connection index (LWcI) was proposed to quantify the stability margin of a branch. Then an instability prediction method and an unstable branch screening method were proposed based on LWcI and voltage phase angle difference. Finally, the rapidity and effectiveness of the proposed method are verified through the simulation analysis of IEEE-118 system.


2018 ◽  
Vol 10 (11) ◽  
pp. 4140 ◽  
Author(s):  
Seungchan Oh ◽  
Heewon Shin ◽  
Hwanhee Cho ◽  
Byongjun Lee

Efforts to reduce greenhouse gas emissions constitute a worldwide trend. According to this trend, there are many plans in place for the replacement of conventional electric power plants operating using fossil fuels with renewable energy sources (RESs). Owing to current needs to expand the RES penetration in accordance to a new National power system plan, the importance of RESs is increasing. The RES penetration imposes various impacts on the power system, including transient stability. Furthermore, the fact that they are distributed at multiple locations in the power system is also a factor which makes the transient impact analysis of RESs difficult. In this study, the transient impacts attributed to the penetration of RESs are analyzed and compared with the conventional Korean electric power system. To confirm the impact of the penetration of RESs on transient stability, the effect was analyzed based on a single machine equivalent (SIME) configuration. Simulations were conducted in accordance to the Korean power system by considering the anticipated RES penetration in 2030. The impact of RES on transient stability was provided by a change in CCT by increasing of the RES penetration.


2013 ◽  
Vol 391 ◽  
pp. 271-276
Author(s):  
Peng Li ◽  
Ning Bo Wang ◽  
De Zhi Chen ◽  
Xiao Rong Zhu ◽  
Yun Ting Song

Increasing penetration level of wind power integration has a significant impact on low-frequency oscillations of power systems. Based on PSD-BPA simulation software, time domain simulation analysis and eigenvalue analysis are employed to investigate its effect on power system low-frequency oscillation characteristic in an outward transmitting thermal generated power bundled with wind power illustrative power system. System damping enhances markedly and the risk of low-frequency oscillation reduce when the generation of wind farm increase. In addition, dynamic reactive power compensations apply to wind farm, and the simulation result indicates that it can improve dynamic stability and enhance the system damping.


2013 ◽  
Vol 433-435 ◽  
pp. 1320-1324
Author(s):  
Wei Zheng ◽  
Shi Qun Li ◽  
Yong Zhi ◽  
Run Qing Bai ◽  
Chen Liang ◽  
...  

Recently, the static synchronous compensator (STATCOM) device has been installed in Jiuquan wind farm in Gansu Province. To study its ability to support voltage, this paper presents a study of the mathematical model of the steady state and transient state of STATCOM and then uses the power system analysis software package (PSASP) to establish a user-defined model of STATCOM. In addition, the model is added into the power system example (CEPRI 7). After that, the power flow calculation and transient stability calculation are carried out to simulate and analyze. At last the STATCOM device is field tested in Jiuquan wind power base. Test results verify that STATCOM effectively supports the grid voltage.


Sign in / Sign up

Export Citation Format

Share Document