Intelligent Numerical Manipulation of Micrometer-Scale Emulsions Using Polymer Confinement

2013 ◽  
Vol 813 ◽  
pp. 431-434 ◽  
Author(s):  
Li Guo Zhang ◽  
Le Xun Xue ◽  
Pei Yuan He ◽  
Yuan Ming Qi ◽  
Yu Min Lu

The manipulation of emulsions at micrometer-scale is a challenging topic for industrial application, especially for monodisperse microemulsions production. The development of material science and afterwards the creation of polymer confinement proposed efficient devices for micrometer scale emulsions fabrication. In this work, the flow regime of emulsion generation was studied to depict numerical manipulation of micrometer-scale emulsions through biomicrofluidic technology. At first, correlation analysis between experiment conditions and results were conducted, then different linear modeling and non-linear modeling, including Artificial Neural Network Modeling (NNM) technology, were performed to characterize the emulsion variation. Both models can well manipulate emulsion variation. Compared with linear modeling, non-linear models ameliorate the performance on the manipulation of micrometer-scale emulsion.

RSC Advances ◽  
2021 ◽  
Vol 11 (35) ◽  
pp. 21702-21715
Author(s):  
M. S. Dar ◽  
Khush Bakhat Akram ◽  
Ayesha Sohail ◽  
Fatima Arif ◽  
Fatemeh Zabihi ◽  
...  

Synthesis of Fe3O4–graphene (FG) nanohybrids and magnetothermal measurements of FxG100–x (x = 0, 25, 45, 65, 75, 85, 100) nanohybrids (25 mg each) at a 633 kHz alternating magnetic field of strength 9.1 mT.


Sign in / Sign up

Export Citation Format

Share Document