3D Machining Process Planning Based on Machining Feature Recognition Technique

2014 ◽  
Vol 945-949 ◽  
pp. 127-136 ◽  
Author(s):  
Chao Liang ◽  
Xu Zhang ◽  
Qing Zhang

In the model-based definition (MBD) scheme, activities of process planning need to be carried out in 3D environment. To realize the 3D computer-aided process planning (3D CAPP), the design solid model needs to be transferred into a representation as manufacturing features, features’ process requirement and product manufacturing information (PMI), and then the generative process planning techniques can be realized by inferring machining operations based machining feature knowledge base. A machining feature-based 3D computer-aided process planning approach is proposed for machining part. Design model is transferred into boundary representation (B-Rep). According to a machining features classification scheme, hybrid machining feature recognition technique is introduced. A part process information model is generated including machining features, feature relationship, feature’s process chain. For each recognized machining feature, a feature’s process chain is inferred from feature knowledge base, based on feature type, process requirements, dimension and tolerances, and the enterprise manufacturing resources. Process intermediate models corresponding to each process operation are generated automatically by applying geometry local modification operations. The complete process plan is generated and documented with detailed operation information and 3D process intermediate models. A 3D CAPP tool is developed on ACIS/HOOPS, with industrial cases to demonstrate the feasibility and applicability of proposed method.

Author(s):  
Jhy-Cherng Tsai ◽  
Weirong Tsai

Abstract This paper presents a knowledge-base approach that assists a designer to evaluate possible process plans and associated costs based on tolerancing specifications of the designed part. It is an effort to take dimensional tolerances into computer-aided process planning (CAPP) for cylindrical parts through the usage of databases and knowledge bases. Geometric features with tolerancing specifications in a CAD system are first used to determine possible machining operations that can achieve the specified tolerances based on data from the machining feature database, the process precision grade database, and the precision grade database. Process plans are then generated based on rules and knowledge from process sequence knowledge base and the machining feature database. Possible process plans are further organized as a graph. Optimal process plan with least cost is then selected by searching through the graph. This is achieved based on machine set-up and operation costs that are derived from the machine tool resource database, the process parameter database, and the machine set-up and operation cost database. A CAPP software prototype supporting tolerance design on the AutoCAD platform is also demonstrated with examples to illustrate this approach.


2014 ◽  
Vol 598 ◽  
pp. 591-594 ◽  
Author(s):  
Li Yan Zhang

ISO 14649, known as STEP-NC, is new model of data transfer between CAD/CAM systems and CNC machines. In this paper, the modeling based on machining feature is proposed. The machining feature comes from the manufacturing process considering the restriction of machining technology and machining resource. Then the framework for computer aided process planning is presented, where the algorithms of operation planning is studied. The practical example has been provided and results indicate that machining feature based model can integrate with CAPP and STEP-NC seamlessly.


2013 ◽  
Vol 392 ◽  
pp. 931-935
Author(s):  
M.A. Saleh ◽  
H.M.A. Hussein ◽  
H.M. Mousa

This paper describes computer aided process planning for a freeform surface; sheet metal features. Automotive body panels are always manufactured using thin forming sheets; the developed CAPP system consists of two modules which are feature recognition module based on STEP AP203 and a process plan module; two additional modules for automotive panel CAPP system and cost estimation module are also incorporated in the system of punch and bending operation. Stamped or punched features in generative shape design are used to design automotive panels; the generative CAPP system is written in visual basic 2008 language and implemented in several case studies demonstrated in the present work. Feature recognition of punched; stamped internal features in free form surface recognized in base of data exchange files using STEP AP203 ISO-10303-21.


Author(s):  
Xu Zhang ◽  
Chao Liang ◽  
Tiedong Si ◽  
Ding Ding

In process planning of machined part, machining feature recognition and representation, feature-based generative process planning, and the process intermediate model generation are the key issues. While many research results have been achieved in recent years, the complete modeling of machining features, process operations, and the 3D models in process planning are still need further research to make the techniques to be applied in practical CAPP systems. In this paper, a machining feature definition and classification method is proposed for the purpose of process planning based on 3D model. Machining features are defined as the surfaces formed by a serious of machining operation. The classification scheme of machining features is proposed for the purpose of feature recognition, feature-based machining operations reasoning, and knowledge representation. Recognized from B-Rep representation of design model, machining features are represented by adjacent graph and organized by feature relations. The machining process plan is modeled as operations and steps, which is the combination and sequencing of machining feature’s process steps. The process intermediate models (PIM) are important for process documentation, analysis and NC programming. An automatic PIM generation approach is proposed using local operations directly on B-Rep model. The proposed data structure and algorithm is adopted in the development of CAPP tool on solid modeler ACIS/HOOPS.


Author(s):  
Xiangyu Zhou ◽  
Junqi Yan ◽  
Yi Jin ◽  
Dengzhe Ma ◽  
Zhi-Kui Ling

Abstract Process Planning of a product determines the process activities during its manufacturing process. Transformation of the product from design to its final form by process planning is controlled by its manufacturing environment. In this paper, the systematic representation of a manufacturing environment and a hierarchical data model to represent a process plan is studied and introduced for the flexibility of the Computer Aided Process Planning (CAPP) system and for the integration purpose. An event-driven architecture for the design of general CAPP systems is established based on these models. A CAPP system (U-CAPP) developed by the authors based on these concepts is briefly described.


2017 ◽  
Vol 11 (2) ◽  
pp. 242-250 ◽  
Author(s):  
Kenta Koremura ◽  
◽  
Yuki Inoue ◽  
Keiichi Nakamoto

In the manufacturing industry, there is an urgent need to shorten the manufacturing lead time of products. Therefore, optimizing process planning is essential to realize high efficiency machining. In this study, in order to develop a computer aided process planning (CAPP) system using previously proposed machining features, a prediction method for some process evaluation indices is proposed. Many candidates for the machining process exist, depending on the recognized machining features in a previous study. Therefore, by using these indices, operators can select a suitable process from among these candidates according to their ideas. Case studies of process planning are conducted to confirm that the operator’s strategy affects the selection of the machining process candidates. From the case study results, it is found that the proposed process evaluation indices have potential use in determining the machining process utilized, and are suitable for a flexible CAPP system of multi-tasking machine tools.


1997 ◽  
pp. 65-74
Author(s):  
Napsiah Ismail ◽  
Nooh Abu Bakar

This paper introduces an ongoing research which is aimed at the development of an intelligent form feature extraction system from Computer Aided Design (CAD) database, a high level data structure form useful for Computer Aided Manufacturing (CAM) such as Automated Process Planning System (APPS). Part description in CAD models is the form of basic geometry and topology that is unsuitable for direct application in APPS. Furthermore, CAD software does not incorporate sufficient manufacturing specific data to be used in APPS. Therefore, feature recognition systems will provide the capabilities for bridging the gap between the CAD database and the CAM database. A solid boundary representation (B-rep) model of the part is used to describe the part. This paper concentrates on the recognition of machinable features of either depression or protrusion types to be used in Automated Process Planning System. Logical procedures were developed to recognise these features which consists of both simple and intersecting features.


Sign in / Sign up

Export Citation Format

Share Document