Research Status and Prospect of Dish-Stirling System

2014 ◽  
Vol 953-954 ◽  
pp. 83-86 ◽  
Author(s):  
Lin Jun Wang ◽  
Li Xiao Xu ◽  
Jing Men ◽  
Dong Zhang ◽  
Zhang Wei Gao ◽  
...  

Solar energy is a kind of clean and green energy, its use can reduce the dual pressure of resources and environmental pollution. Firstly, this paper introduces groove, tower and dish type solar thermal power generation system. Then it introduces the components of dish-stirling system and the principle and features of stirling engine. The system has simple structure, reliable operation, high efficiency, low noise, low cost of power generation and good commercial prospects. But for some key parts of system, there are many problems that need to be solved. The main research of dish-stirling system is to optimize the key parts of system and reduce the system costs.

2021 ◽  
Vol 25 (4 Part B) ◽  
pp. 2905-2912
Author(s):  
Bowen Wang

In the smart grid context, the article combines SEGS-VI solar thermal power station parameters to establish a solar thermal power generation system model. The thesis is based on the First and Second laws of thermodynamics. It uses the white box model analysis method of the energy system to calculate the solar thermal power generation system-concentrating and collecting subsystem, heat exchange subsystem, and power subsystem to obtain the subsystems dissipation of each process. Finally, the article uses the white box model analysis of the total energy system to treat the subsystems as white boxes, and connects them to form a white box network, makes a reasonable evaluation of the energy consumption status of the total energy system, and finds the weak links in the energy use process of the system. Provide a basis for system energy saving.


Author(s):  
Kazuhiro Ohyama ◽  
Seiki Chiba ◽  
Mikio Waki ◽  
Changqing Jiang ◽  
Makoto Takeshita ◽  
...  

Abstract: Power generation using dielectric elastomer (DE) artificial muscle is attracting attention because of its light weight, low cost, and high efficiency. Since this method is a system that produces electricity without emitting carbon dioxide nor using rare earths, it would contribute to the goal of environmental sustainability. In this paper, the background of DEs, the associated high-efficient wave energy generation (WEG) systems that we developed using DEs, as well as the latest development of its material are summarized. By covering the challenges we face and the achievements that we’ve reached, we can discuss the opportunities to build the foundation of a recycled energy society through the usage of these WEGs. On the other hand, to make these possibilities commercially successful, the advantages of DEs need to be integrated with traditional technologies. To achieve this, we also consider the method of using DEs alone and a system used in combination with an oscillating water column. Finally, the current status and future of DEGs are discussed.


2016 ◽  
Vol 78 (5-8) ◽  
Author(s):  
Noor Bazila Sharifmuddin ◽  
Tohru Suwa ◽  
Sheikh Ahmad Zaki Shaikh Salim

Complex grid systems have been gradually replaced by smaller and simpler grid systems called Microgrids. Integration of a solar thermal power generation systems into Microgrids open a new horizon of renewable energy power generation to achieve the supply and demand balance of electricity. Microgrid dispatch strategy is a control method of energy balance between power generation and electricity consumption. A thermal storage integrated into the system buffers the intermittency of solar radiation used as the heat source of the power generation system. The daily starting time for the power generation is determined by the dispatch strategy in search of minimum power from the conventional grid and maximum electricity generation from the solar thermal power generation system. In the simulation stage, the heat energy available for power generation and amount of thermal energy saved in the thermal storage is calculated at each time step using measured solar radiation data as the heat source and load profile data as the consumption required. Based on the simulation result, the power generation starting time for the next day is determined. The effectiveness of the proposed dispatch strategy is demonstrated by obtaining the best starting time and identifying minimum power requiredfrom the conventional grid. The power supply from the conventional grid is reduced by 10% by applying the proposed methodology.


Sign in / Sign up

Export Citation Format

Share Document