harmonic response analysis
Recently Published Documents


TOTAL DOCUMENTS

158
(FIVE YEARS 37)

H-INDEX

6
(FIVE YEARS 2)

Vibration ◽  
2021 ◽  
Vol 4 (4) ◽  
pp. 906-937
Author(s):  
Mpho Podile ◽  
Daramy Vandi Von Kallon ◽  
Bingo Masiza Balekwa ◽  
Michele Cali

Rail–wheel interaction is one of the most significant and studied aspects of rail vehicle dynamics. The vibrations caused by rail–wheel interaction can become critical when the radial, lateral and longitudinal loads of the vehicle, cargo and passengers are experienced while the vehicle is in motion along winding railroad paths. This mainly causes an excessive production of vibrations that may lead to discomfort for the passengers and shortening of the life span of the vehicle’s body parts. The use of harmonic response analysis (HRA) shows that the wheel experiences high vibrational amplitudes from both radial and lateral excitation. The present study describes a numerical and experimental design procedure that allows mitigation of the locomotive wheel resonance during radial and lateral excitations through viscoelastic layers. It is proven that these high frequencies can be reduced through the proper design of damping layer mechanisms. In particular, three parametric viscoelastic damping layer arrangements were analyzed (on the web of both wheel sides, under the rim of both wheel sides and on the web and under the rim of both wheel sides). The results demonstrate that the correct design and dimensions of these viscoelastic damping layers reduce the high-amplitude resonance peaks of the wheel successfully during both radial and lateral excitation.


Micromachines ◽  
2021 ◽  
Vol 12 (11) ◽  
pp. 1396
Author(s):  
Andrius Čeponis ◽  
Dalius Mažeika ◽  
Vytautas Jūrėnas

This paper presents numerical and experimental investigations of a small size piezoelectric locomotion platform that provides unlimited planar motion. The platform consists of three piezoelectric bimorph plates attached to the equilateral triangle-shaped structure by an angle of 60 degrees. Alumina spheres are glued at the bottom of each plate and are used as a contacting element. The planar motion of the platform is generated via excitation of the first bending mode of the corresponding plate using a single harmonic signal while the remaining plates operate as passive supports. The direction of the platform motion controlled by switching electric signal between piezoelectric plates. A numerical investigation of the 2-DOF platform was performed, and it was found out that the operation frequency of the bimorph plates is 23.67 kHz, while harmonic response analysis showed that the maximum displacement amplitude of the contact point reached 563.6 µm in the vertical direction while an excitation signal of 210 Vp-p is applied. Prototype of the 2-DOF piezoelectric platform was made, and an experimental study was performed. The maximum linear velocity of 44.45 mm/s was obtained when preload force and voltage of 0.546 N and 210 Vp-p were applied, respectively.


2021 ◽  
Vol 10 (4) ◽  
pp. 0-0

The wheelchair is the primary rehabilitation device used to enable the movement capability of disabled people. To provide an appropriate wheelchair, the doctor will suggest the necessary customization has to be made on the existing one. However, the customization of a manual wheelchair is easy and cost-effective compared with the powered wheelchair due to simple structure and spare parts availability in the market... Because of the above, a novel concept is proposed. The rear wheels of the manual wheelchair are replaced with a Direct drive motor alloy wheel. CATIA – V5 is utilized to design the proposed wheel and ANSYS software is used to check its performance at different load conditions. The stress-bearing capability of different materials for various Direct drive motor weights is observed through structural analysis. The natural mode frequencies are found using modal analysis and its nature of vibrations is verified. The harmonic response analysis is used to test the nature of deformation and stress concerning natural frequencies for the applied force.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Ming Zhang ◽  
Qing-Guang Chen

Experimental and numerical investigations of the modal behavior of a prototype Kaplan turbine runner in air have been conducted in this paper. The widely used roving accelerometer method was used in the experimental modal analysis. A systematic approach from a single blade model to the whole runner has been used in the simulation to get a thorough understanding. The experimental results show that all the detected modes concentrate their displacements on the impacted blade. The numerical results show that the modes of the single blade form different mode families of the runner, and each mode family corresponds to a narrow frequency band. Harmonic response analysis shows that, at the response peak point, the single blade excitation can only get mode shapes with concentrations on the exciting blade due to the superposition of the close modes in each mode family, which explains the experimental results well, while the mode superposition can be avoided by the order excitation method. With the reduction of the connection stiffness between the blades and hub/control system, the frequencies of most modes change from insensitive to more and more sensitive to the connection stiffness change, which results in a sensitive area and an insensitive area. Through comparison with the experimental results, it is indicated that the natural frequencies of the runner can probably be predicted by merging the runner into a whole body.


Author(s):  
Chaitanya V. Bhore ◽  
Atul B. Andhare ◽  
Pramod M. Padole ◽  
Chinmay R. Chavan ◽  
Vishal S. Gawande ◽  
...  

2021 ◽  
Vol 12 (1) ◽  
pp. 689-700
Author(s):  
Ao Lei ◽  
Chuan-Xue Song ◽  
Yu-Long Lei ◽  
Yao Fu

Abstract. To make vehicles more reliable and efficient, many researchers have tried to improve the rotor performance. Although certain achievements have been made, the previous finite element model did not reflect the historical process of the motor rotor well, and the rigidity and mass in rotor optimization are less discussed together. This paper firstly introduces fractional order into a finite element model to conduct the harmonic response analysis. Then, we propose an optimal design framework of a rotor. In the framework, objective functions of rigidity and mass are defined, and the relationship between high rigidity and the first-order frequency is discussed. In order to find the optimal values, an accelerated optimization method based on response surface (ARSO) is proposed to find the suitable design parameters of rigidity and mass. Because the higher rigidity can be transformed into the first-order natural frequency by objective function, this paper analyzes the first-order frequency and mass of a motor rotor in the experiment. The results proved that not only is the fractional model effective, but also the ARSO can optimize the rotor structure. The first-order natural frequency of asynchronous motor rotor is increased by 11.2 %, and the mass is reduced by 13.8 %, which can realize high stiffness and light mass of asynchronous motor rotors.


Sign in / Sign up

Export Citation Format

Share Document