Denoise PET Images Based on a Combining Method of EMD and ICA

2014 ◽  
Vol 981 ◽  
pp. 340-343
Author(s):  
Qi Wei ◽  
Qi Liu

The incidental component in addition to the measured target signals is considered as noise of Positron Emission Tomography (PET) images. A novel method to denoise the PET images based on Empirical Mode Decomposition (EMD) and Independent Component Analysis (ICA) associated with Sparse Code Shrinkage (SCS) technique is proposed in this paper. EMD is executed to decompose a PET image into a number of Intrinsic Mode Functions (IMFs), which are used to reconstruct a new PET image after chosen by means of an inverse EMD procedure. By applying ICA to the new PET image, an orthogonal dataset can be obtained and the signal-noise separation can be realized. Then a clearer PET image can be reconstructed by SCS. The simulation results indicate that the proposed method is effective to denoise PET images.

2018 ◽  
Vol 23 (3) ◽  
pp. 269-280 ◽  
Author(s):  
S. Sengottuvel ◽  
Pathan Fayaz Khan ◽  
N. Mariyappa ◽  
Rajesh Patel ◽  
S. Saipriya ◽  
...  

Cutaneous measurements of electrogastrogram (EGG) signals are heavily contaminated by artifacts due to cardiac activity, breathing, motion artifacts, and electrode drifts whose effective elimination remains an open problem. A common methodology is proposed by combining independent component analysis (ICA) and ensemble empirical mode decomposition (EEMD) to denoise gastric slow-wave signals in multichannel EGG data. Sixteen electrodes are fixed over the upper abdomen to measure the EGG signals under three gastric conditions, namely, preprandial, postprandial immediately, and postprandial 2 h after food for three healthy subjects and a subject with a gastric disorder. Instantaneous frequencies of intrinsic mode functions that are obtained by applying the EEMD technique are analyzed to individually identify and remove each of the artifacts. A critical investigation on the proposed ICA-EEMD method reveals its ability to provide a higher attenuation of artifacts and lower distortion than those obtained by the ICA-EMD method and conventional techniques, like bandpass and adaptive filtering. Characteristic changes in the slow-wave frequencies across the three gastric conditions could be determined from the denoised signals for all the cases. The results therefore encourage the use of the EEMD-based technique for denoising gastric signals to be used in clinical practice.


2021 ◽  
Vol 15 ◽  
Author(s):  
Chao-Lin Teng ◽  
Yi-Yang Zhang ◽  
Wei Wang ◽  
Yuan-Yuan Luo ◽  
Gang Wang ◽  
...  

Electrooculogram (EOG) is one of common artifacts in recorded electroencephalogram (EEG) signals. Many existing methods including independent component analysis (ICA) and wavelet transform were applied to eliminate EOG artifacts but ignored the possible impact of the nature of EEG signal. Therefore, the removal of EOG artifacts still faces a major challenge in EEG research. In this paper, the ensemble empirical mode decomposition (EEMD) and ICA algorithms were combined to propose a novel EEMD-based ICA method (EICA) for removing EOG artifacts from multichannel EEG signals. First, the ICA method was used to decompose original EEG signals into multiple independent components (ICs), and the EOG-related ICs were automatically identified through the kurtosis method. Then, by performing the EEMD algorithm on EOG-related ICs, the intrinsic mode functions (IMFs) linked to EOG were discriminated and eliminated. Finally, artifact-free IMFs were projected to obtain the ICs without EOG artifacts, and the clean EEG signals were ultimately reconstructed by the inversion of ICA. Both EOGs correction from simulated EEG signals and real EEG data were studied, which verified that the proposed method could achieve an improved performance in EOG artifacts rejection. By comparing with other existing approaches, the EICA obtained the optimal performance with the highest increase in signal-to-noise ratio and decrease in root mean square error and correlation coefficient after EOG artifacts removal, which demonstrated that the proposed method could more effectively eliminate blink artifacts from multichannel EEG signals with less error influence. This study provided a novel promising method to eliminate EOG artifacts with high performance, which is of great importance for EEG signals processing and analysis.


Sign in / Sign up

Export Citation Format

Share Document